视觉重新映射。

IF 5 2区 医学 Q1 NEUROSCIENCES
Julie D Golomb, James A Mazer
{"title":"视觉重新映射。","authors":"Julie D Golomb,&nbsp;James A Mazer","doi":"10.1146/annurev-vision-032321-100012","DOIUrl":null,"url":null,"abstract":"<p><p>Our visual system is fundamentally retinotopic. When viewing a stable scene, each eye movement shifts object features and locations on the retina. Thus, sensory representations must be updated, or remapped, across saccades to align presaccadic and postsaccadic inputs. The earliest remapping studies focused on anticipatory, presaccadic shifts of neuronal spatial receptive fields. Over time, it has become clear that there are multiple forms of remapping and that different forms of remapping may be mediated by different neural mechanisms. This review attempts to organize the various forms of remapping into a functional taxonomy based on experimental data and ongoing debates about forward versus convergent remapping, presaccadic versus postsaccadic remapping, and spatial versus attentional remapping. We integrate findings from primate neurophysiological, human neuroimaging and behavioral, and computational modeling studies. We conclude by discussing persistent open questions related to remapping, with specific attention to binding of spatial and featural information during remapping and speculations about remapping's functional significance.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":" ","pages":"257-277"},"PeriodicalIF":5.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9255256/pdf/nihms-1816954.pdf","citationCount":"11","resultStr":"{\"title\":\"Visual Remapping.\",\"authors\":\"Julie D Golomb,&nbsp;James A Mazer\",\"doi\":\"10.1146/annurev-vision-032321-100012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Our visual system is fundamentally retinotopic. When viewing a stable scene, each eye movement shifts object features and locations on the retina. Thus, sensory representations must be updated, or remapped, across saccades to align presaccadic and postsaccadic inputs. The earliest remapping studies focused on anticipatory, presaccadic shifts of neuronal spatial receptive fields. Over time, it has become clear that there are multiple forms of remapping and that different forms of remapping may be mediated by different neural mechanisms. This review attempts to organize the various forms of remapping into a functional taxonomy based on experimental data and ongoing debates about forward versus convergent remapping, presaccadic versus postsaccadic remapping, and spatial versus attentional remapping. We integrate findings from primate neurophysiological, human neuroimaging and behavioral, and computational modeling studies. We conclude by discussing persistent open questions related to remapping, with specific attention to binding of spatial and featural information during remapping and speculations about remapping's functional significance.</p>\",\"PeriodicalId\":48658,\"journal\":{\"name\":\"Annual Review of Vision Science\",\"volume\":\" \",\"pages\":\"257-277\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9255256/pdf/nihms-1816954.pdf\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Vision Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-vision-032321-100012\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/7/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Vision Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-vision-032321-100012","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 11

摘要

我们的视觉系统基本上是视网膜变性的。当观看一个稳定的场景时,每次眼球运动都会改变物体在视网膜上的特征和位置。因此,感官表征必须更新,或重新映射,跨扫视对齐前和后扫视输入。最早的重新映射研究集中在神经元空间感受野的预期性、前额叶转移上。随着时间的推移,人们已经清楚地认识到存在多种形式的重新映射,不同形式的重新映射可能由不同的神经机制介导。本综述试图根据实验数据和正在进行的关于前向重映射与收敛重映射、前皮层重映射与后皮层重映射、空间重映射与注意重映射的争论,将各种形式的重映射组织成一个功能分类。我们整合了灵长类动物神经生理学,人类神经成像和行为以及计算建模研究的发现。最后,我们讨论了与重映射相关的持续开放问题,特别关注重映射过程中空间和特征信息的绑定,以及对重映射功能意义的推测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Visual Remapping.

Visual Remapping.

Our visual system is fundamentally retinotopic. When viewing a stable scene, each eye movement shifts object features and locations on the retina. Thus, sensory representations must be updated, or remapped, across saccades to align presaccadic and postsaccadic inputs. The earliest remapping studies focused on anticipatory, presaccadic shifts of neuronal spatial receptive fields. Over time, it has become clear that there are multiple forms of remapping and that different forms of remapping may be mediated by different neural mechanisms. This review attempts to organize the various forms of remapping into a functional taxonomy based on experimental data and ongoing debates about forward versus convergent remapping, presaccadic versus postsaccadic remapping, and spatial versus attentional remapping. We integrate findings from primate neurophysiological, human neuroimaging and behavioral, and computational modeling studies. We conclude by discussing persistent open questions related to remapping, with specific attention to binding of spatial and featural information during remapping and speculations about remapping's functional significance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Vision Science
Annual Review of Vision Science Medicine-Ophthalmology
CiteScore
11.10
自引率
1.70%
发文量
19
期刊介绍: The Annual Review of Vision Science reviews progress in the visual sciences, a cross-cutting set of disciplines which intersect psychology, neuroscience, computer science, cell biology and genetics, and clinical medicine. The journal covers a broad range of topics and techniques, including optics, retina, central visual processing, visual perception, eye movements, visual development, vision models, computer vision, and the mechanisms of visual disease, dysfunction, and sight restoration. The study of vision is central to progress in many areas of science, and this new journal will explore and expose the connections that link it to biology, behavior, computation, engineering, and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信