利用二维纳米材料控制铜厚膜残余应力的研究。

Kwon Jai Lee, Jee Young Oh, Kyong Nam Kim
{"title":"利用二维纳米材料控制铜厚膜残余应力的研究。","authors":"Kwon Jai Lee,&nbsp;Jee Young Oh,&nbsp;Kyong Nam Kim","doi":"10.1166/jnn.2021.19512","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid development of the electronics industry, high-density electronic devices and component mounting have gained popularity. Because of the heat generated from these devices, efficiency of the electronic parts is significantly lowered and life of various electronic devices is considerably shortened. Therefore, it is essential to efficiently dissipate the heat generated from the device to extend product life and ensure high efficiency of electronic components. This study evaluated how residual stress is impacted by the thickness of the deposited copper film, which is widely used as a heat dissipation material, and the number of graphene layers. The results confirmed that the residual stress decreased with increasing thickness. Moreover, the residual stress changed based on the transfer area of graphene, which had an elastic modulus eight times that of copper, indicating that the residual stress of the deposited copper film can be controlled.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":"21 12","pages":"5960-5964"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on the Control of Residual Stress of Copper Thick-Film Using 2D Nanomaterial.\",\"authors\":\"Kwon Jai Lee,&nbsp;Jee Young Oh,&nbsp;Kyong Nam Kim\",\"doi\":\"10.1166/jnn.2021.19512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the rapid development of the electronics industry, high-density electronic devices and component mounting have gained popularity. Because of the heat generated from these devices, efficiency of the electronic parts is significantly lowered and life of various electronic devices is considerably shortened. Therefore, it is essential to efficiently dissipate the heat generated from the device to extend product life and ensure high efficiency of electronic components. This study evaluated how residual stress is impacted by the thickness of the deposited copper film, which is widely used as a heat dissipation material, and the number of graphene layers. The results confirmed that the residual stress decreased with increasing thickness. Moreover, the residual stress changed based on the transfer area of graphene, which had an elastic modulus eight times that of copper, indicating that the residual stress of the deposited copper film can be controlled.</p>\",\"PeriodicalId\":16417,\"journal\":{\"name\":\"Journal of nanoscience and nanotechnology\",\"volume\":\"21 12\",\"pages\":\"5960-5964\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of nanoscience and nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jnn.2021.19512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanoscience and nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jnn.2021.19512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着电子工业的快速发展,高密度电子器件和元器件的安装得到了广泛的应用。由于这些器件产生的热量,大大降低了电子部件的效率,大大缩短了各种电子器件的寿命。因此,为了延长产品寿命,保证电子元件的高效率,必须有效地散发器件产生的热量。本研究评估了沉积铜膜(广泛用作散热材料)的厚度和石墨烯层数对残余应力的影响。结果表明,残余应力随厚度的增加而减小。石墨烯的弹性模量是铜的8倍,其残余应力随传递面积的变化而变化,表明沉积铜膜的残余应力是可以控制的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on the Control of Residual Stress of Copper Thick-Film Using 2D Nanomaterial.

With the rapid development of the electronics industry, high-density electronic devices and component mounting have gained popularity. Because of the heat generated from these devices, efficiency of the electronic parts is significantly lowered and life of various electronic devices is considerably shortened. Therefore, it is essential to efficiently dissipate the heat generated from the device to extend product life and ensure high efficiency of electronic components. This study evaluated how residual stress is impacted by the thickness of the deposited copper film, which is widely used as a heat dissipation material, and the number of graphene layers. The results confirmed that the residual stress decreased with increasing thickness. Moreover, the residual stress changed based on the transfer area of graphene, which had an elastic modulus eight times that of copper, indicating that the residual stress of the deposited copper film can be controlled.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of nanoscience and nanotechnology
Journal of nanoscience and nanotechnology 工程技术-材料科学:综合
自引率
0.00%
发文量
0
审稿时长
3.6 months
期刊介绍: JNN is a multidisciplinary peer-reviewed journal covering fundamental and applied research in all disciplines of science, engineering and medicine. JNN publishes all aspects of nanoscale science and technology dealing with materials synthesis, processing, nanofabrication, nanoprobes, spectroscopy, properties, biological systems, nanostructures, theory and computation, nanoelectronics, nano-optics, nano-mechanics, nanodevices, nanobiotechnology, nanomedicine, nanotoxicology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信