{"title":"由不同表面活性剂组成的非抗菌和抗菌ZnO纳米颗粒。","authors":"Saee Gharpure, Tushar Jadhav, Chetan Ghotekar, Anuja Jagtap, Yogita Vare, Balaprasad Ankamwar","doi":"10.1166/jnn.2021.19513","DOIUrl":null,"url":null,"abstract":"<p><p>Zinc oxide nanoparticles were synthesized using different surfactants such as SDS, CTAB, Triton X-100, PVP K-30 and ethylene glycol. ZnO NPs were tested for antibacterial activity before and after calcination against different micro-organisms like <i>E. coli</i> and <i>P. aeruginosa</i> (Gram negative) as well as <i>S. aureus</i> and <i>B. subtilis</i> (Gram positive). Antibacterial activity was observed in SDScapped ZnO NPs only against <i>B. subtilis</i>. Antibacterial activity of ZnO-capped SDS was tested in a concentration range 0.625-10 mg/mL. Increased antibacterial activity was observed before calcination as compared to after calcination. Minimum concentration at which uncalcinated as well as calcinated SDS-capped ZnO NPs show antibacterial activity is 2.5 mg/mL and 5 mg/mL respectively. Non-antibacterial nature of ZnO NPs highlights its further use in drug delivery due to its inert nature, enhanced efficacy in association with therapeutic drugs as well as easy disposal.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":"21 12","pages":"5945-5959"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Non-Antibacterial and Antibacterial ZnO Nanoparticles Composed of Different Surfactants.\",\"authors\":\"Saee Gharpure, Tushar Jadhav, Chetan Ghotekar, Anuja Jagtap, Yogita Vare, Balaprasad Ankamwar\",\"doi\":\"10.1166/jnn.2021.19513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Zinc oxide nanoparticles were synthesized using different surfactants such as SDS, CTAB, Triton X-100, PVP K-30 and ethylene glycol. ZnO NPs were tested for antibacterial activity before and after calcination against different micro-organisms like <i>E. coli</i> and <i>P. aeruginosa</i> (Gram negative) as well as <i>S. aureus</i> and <i>B. subtilis</i> (Gram positive). Antibacterial activity was observed in SDScapped ZnO NPs only against <i>B. subtilis</i>. Antibacterial activity of ZnO-capped SDS was tested in a concentration range 0.625-10 mg/mL. Increased antibacterial activity was observed before calcination as compared to after calcination. Minimum concentration at which uncalcinated as well as calcinated SDS-capped ZnO NPs show antibacterial activity is 2.5 mg/mL and 5 mg/mL respectively. Non-antibacterial nature of ZnO NPs highlights its further use in drug delivery due to its inert nature, enhanced efficacy in association with therapeutic drugs as well as easy disposal.</p>\",\"PeriodicalId\":16417,\"journal\":{\"name\":\"Journal of nanoscience and nanotechnology\",\"volume\":\"21 12\",\"pages\":\"5945-5959\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of nanoscience and nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jnn.2021.19513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanoscience and nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jnn.2021.19513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-Antibacterial and Antibacterial ZnO Nanoparticles Composed of Different Surfactants.
Zinc oxide nanoparticles were synthesized using different surfactants such as SDS, CTAB, Triton X-100, PVP K-30 and ethylene glycol. ZnO NPs were tested for antibacterial activity before and after calcination against different micro-organisms like E. coli and P. aeruginosa (Gram negative) as well as S. aureus and B. subtilis (Gram positive). Antibacterial activity was observed in SDScapped ZnO NPs only against B. subtilis. Antibacterial activity of ZnO-capped SDS was tested in a concentration range 0.625-10 mg/mL. Increased antibacterial activity was observed before calcination as compared to after calcination. Minimum concentration at which uncalcinated as well as calcinated SDS-capped ZnO NPs show antibacterial activity is 2.5 mg/mL and 5 mg/mL respectively. Non-antibacterial nature of ZnO NPs highlights its further use in drug delivery due to its inert nature, enhanced efficacy in association with therapeutic drugs as well as easy disposal.
期刊介绍:
JNN is a multidisciplinary peer-reviewed journal covering fundamental and applied research in all disciplines of science, engineering and medicine. JNN publishes all aspects of nanoscale science and technology dealing with materials synthesis, processing, nanofabrication, nanoprobes, spectroscopy, properties, biological systems, nanostructures, theory and computation, nanoelectronics, nano-optics, nano-mechanics, nanodevices, nanobiotechnology, nanomedicine, nanotoxicology.