胃饥饿素对脂肪组织脂解的调节因高脂肪饮食喂养而受损,并不能通过运动恢复。

IF 3.5 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM
Barbora Hucik, Andrew J Lovell, Evan M Hoecht, Daniel T Cervone, David M Mutch, David J Dyck
{"title":"胃饥饿素对脂肪组织脂解的调节因高脂肪饮食喂养而受损,并不能通过运动恢复。","authors":"Barbora Hucik,&nbsp;Andrew J Lovell,&nbsp;Evan M Hoecht,&nbsp;Daniel T Cervone,&nbsp;David M Mutch,&nbsp;David J Dyck","doi":"10.1080/21623945.2021.1945787","DOIUrl":null,"url":null,"abstract":"<p><p>Ghrelin is released from the stomach as an anticipatory signal prior to a meal and decreases immediately after. Previous research has shown that both acylated (AG) and unacylated (UnAG) ghrelin blunt adrenoreceptor-stimulated lipolysis in rat white adipose tissue (WAT) <i>ex vivo</i>. We investigated whether acute or chronic consumption of a high fat diet (HFD) impaired the ability of ghrelin to regulate adipose tissue lipolysis, and if this impairment could be restored with exercise. After 5 days (5d) of a HFD, or 6 weeks (6 w) of a HFD (60% kcal from fat) with or without exercise training, inguinal and retroperitoneal WAT was collected from anesthetized rats for adipose tissue organ culture. Samples were treated with 1 μM CL 316,243 (CL; lipolytic control), 1 μM CL+150 ng/ml AG or 1 μM CL+150 ng/ml UnAG. Incubation media and tissue were collected after 2 hours. Colorometric assays were used to determine glycerol and free fatty acid (FFA) concentrations in media. Western blots were used to quantify the protein content of lipolytic enzymes and ghrelin receptors in both depots. CL stimulated lipolysis was evidenced by increases in glycerol (p < 0.0001) and FFA (p < 0.0001) concentrations in media compared to control. AG decreased CL-stimulated glycerol release in inguinal WAT from 5d LFD rats (p = 0.0097). Neither AG nor UnAG blunted lipolysis in adipose tissue from 5d or 6 w HFD-fed rats, and exercise did not restore ghrelin's anti-lipolytic ability in 6 w HFD-fed rats. Overall, this study demonstrates that HFD consumption impairs ghrelin's ability to regulate adipose tissue lipolysis.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"10 1","pages":"338-349"},"PeriodicalIF":3.5000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21623945.2021.1945787","citationCount":"3","resultStr":"{\"title\":\"Regulation of adipose tissue lipolysis by ghrelin is impaired with high-fat diet feeding and is not restored with exercise.\",\"authors\":\"Barbora Hucik,&nbsp;Andrew J Lovell,&nbsp;Evan M Hoecht,&nbsp;Daniel T Cervone,&nbsp;David M Mutch,&nbsp;David J Dyck\",\"doi\":\"10.1080/21623945.2021.1945787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ghrelin is released from the stomach as an anticipatory signal prior to a meal and decreases immediately after. Previous research has shown that both acylated (AG) and unacylated (UnAG) ghrelin blunt adrenoreceptor-stimulated lipolysis in rat white adipose tissue (WAT) <i>ex vivo</i>. We investigated whether acute or chronic consumption of a high fat diet (HFD) impaired the ability of ghrelin to regulate adipose tissue lipolysis, and if this impairment could be restored with exercise. After 5 days (5d) of a HFD, or 6 weeks (6 w) of a HFD (60% kcal from fat) with or without exercise training, inguinal and retroperitoneal WAT was collected from anesthetized rats for adipose tissue organ culture. Samples were treated with 1 μM CL 316,243 (CL; lipolytic control), 1 μM CL+150 ng/ml AG or 1 μM CL+150 ng/ml UnAG. Incubation media and tissue were collected after 2 hours. Colorometric assays were used to determine glycerol and free fatty acid (FFA) concentrations in media. Western blots were used to quantify the protein content of lipolytic enzymes and ghrelin receptors in both depots. CL stimulated lipolysis was evidenced by increases in glycerol (p < 0.0001) and FFA (p < 0.0001) concentrations in media compared to control. AG decreased CL-stimulated glycerol release in inguinal WAT from 5d LFD rats (p = 0.0097). Neither AG nor UnAG blunted lipolysis in adipose tissue from 5d or 6 w HFD-fed rats, and exercise did not restore ghrelin's anti-lipolytic ability in 6 w HFD-fed rats. Overall, this study demonstrates that HFD consumption impairs ghrelin's ability to regulate adipose tissue lipolysis.</p>\",\"PeriodicalId\":7226,\"journal\":{\"name\":\"Adipocyte\",\"volume\":\"10 1\",\"pages\":\"338-349\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/21623945.2021.1945787\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adipocyte\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/21623945.2021.1945787\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adipocyte","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21623945.2021.1945787","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 3

摘要

胃促生长素在饭前作为预期信号从胃中释放出来,饭后立即减少。先前的研究表明,在离体大鼠白色脂肪组织(WAT)中,酰化(AG)和未酰化(UnAG)胃饥饿素都能抑制肾上腺素受体刺激的脂肪分解。我们研究了急性或慢性高脂饮食(HFD)是否会损害胃饥饿素调节脂肪组织脂解的能力,以及这种损害是否可以通过运动恢复。在有或没有运动训练的HFD 5天(5d)或HFD 6周(6 w)(60%卡路里来自脂肪)后,从麻醉大鼠的腹股沟和腹膜后收集WAT进行脂肪组织器官培养。样品用1 μM CL 316,243 (CL;1 μM CL+150 ng/ml AG或1 μM CL+150 ng/ml UnAG。2小时后收集培养液和组织。用比色法测定培养基中甘油和游离脂肪酸(FFA)的浓度。采用Western blots定量测定两个仓库中脂溶酶和胃饥饿素受体的蛋白质含量。CL刺激脂肪分解的证据是甘油增加(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Regulation of adipose tissue lipolysis by ghrelin is impaired with high-fat diet feeding and is not restored with exercise.

Regulation of adipose tissue lipolysis by ghrelin is impaired with high-fat diet feeding and is not restored with exercise.

Regulation of adipose tissue lipolysis by ghrelin is impaired with high-fat diet feeding and is not restored with exercise.

Regulation of adipose tissue lipolysis by ghrelin is impaired with high-fat diet feeding and is not restored with exercise.

Ghrelin is released from the stomach as an anticipatory signal prior to a meal and decreases immediately after. Previous research has shown that both acylated (AG) and unacylated (UnAG) ghrelin blunt adrenoreceptor-stimulated lipolysis in rat white adipose tissue (WAT) ex vivo. We investigated whether acute or chronic consumption of a high fat diet (HFD) impaired the ability of ghrelin to regulate adipose tissue lipolysis, and if this impairment could be restored with exercise. After 5 days (5d) of a HFD, or 6 weeks (6 w) of a HFD (60% kcal from fat) with or without exercise training, inguinal and retroperitoneal WAT was collected from anesthetized rats for adipose tissue organ culture. Samples were treated with 1 μM CL 316,243 (CL; lipolytic control), 1 μM CL+150 ng/ml AG or 1 μM CL+150 ng/ml UnAG. Incubation media and tissue were collected after 2 hours. Colorometric assays were used to determine glycerol and free fatty acid (FFA) concentrations in media. Western blots were used to quantify the protein content of lipolytic enzymes and ghrelin receptors in both depots. CL stimulated lipolysis was evidenced by increases in glycerol (p < 0.0001) and FFA (p < 0.0001) concentrations in media compared to control. AG decreased CL-stimulated glycerol release in inguinal WAT from 5d LFD rats (p = 0.0097). Neither AG nor UnAG blunted lipolysis in adipose tissue from 5d or 6 w HFD-fed rats, and exercise did not restore ghrelin's anti-lipolytic ability in 6 w HFD-fed rats. Overall, this study demonstrates that HFD consumption impairs ghrelin's ability to regulate adipose tissue lipolysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Adipocyte
Adipocyte Medicine-Histology
CiteScore
6.50
自引率
3.00%
发文量
46
审稿时长
32 weeks
期刊介绍: Adipocyte recognizes that the adipose tissue is the largest endocrine organ in the body, and explores the link between dysfunctional adipose tissue and the growing number of chronic diseases including diabetes, hypertension, cardiovascular disease and cancer. Historically, the primary function of the adipose tissue was limited to energy storage and thermoregulation. However, a plethora of research over the past 3 decades has recognized the dynamic role of the adipose tissue and its contribution to a variety of physiological processes including reproduction, angiogenesis, apoptosis, inflammation, blood pressure, coagulation, fibrinolysis, immunity and general metabolic homeostasis. The field of Adipose Tissue research has grown tremendously, and Adipocyte is the first international peer-reviewed journal of its kind providing a multi-disciplinary forum for research focusing exclusively on all aspects of adipose tissue physiology and pathophysiology. Adipocyte accepts high-profile submissions in basic, translational and clinical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信