{"title":"视觉问答背后的语言问题","authors":"Raffaella Bernardi, Sandro Pezzelle","doi":"10.1111/lnc3.12417","DOIUrl":null,"url":null,"abstract":"<p>Answering a question that is <i>grounded</i> in an image is a crucial ability that requires understanding the question, the visual context, and their interaction at many linguistic levels: among others, semantics, syntax and pragmatics. As such, visually-grounded questions have long been of interest to theoretical linguists and cognitive scientists. Moreover, they have inspired the first attempts to computationally model natural language understanding, where pioneering systems were faced with the highly challenging task—still unsolved—of jointly dealing with syntax, semantics and inference whilst understanding a visual context. Boosted by impressive advancements in machine learning, the task of answering visually-grounded questions has experienced a renewed interest in recent years, to the point of becoming a research sub-field at the intersection of computational linguistics and computer vision. In this paper, we review current approaches to the problem which encompass the development of datasets, models and frameworks. We conduct our investigation from the perspective of the theoretical linguists; we extract from pioneering computational linguistic work a list of <i>desiderata</i> that we use to review current computational achievements. We acknowledge that impressive progress has been made to reconcile the engineering with the theoretical view. At the same time, we claim that further research is needed to get to a unified approach which jointly encompasses all the underlying linguistic problems. We conclude the paper by sharing our own desiderata for the future.</p>","PeriodicalId":47472,"journal":{"name":"Language and Linguistics Compass","volume":"15 6","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2021-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/lnc3.12417","citationCount":"9","resultStr":"{\"title\":\"Linguistic issues behind visual question answering\",\"authors\":\"Raffaella Bernardi, Sandro Pezzelle\",\"doi\":\"10.1111/lnc3.12417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Answering a question that is <i>grounded</i> in an image is a crucial ability that requires understanding the question, the visual context, and their interaction at many linguistic levels: among others, semantics, syntax and pragmatics. As such, visually-grounded questions have long been of interest to theoretical linguists and cognitive scientists. Moreover, they have inspired the first attempts to computationally model natural language understanding, where pioneering systems were faced with the highly challenging task—still unsolved—of jointly dealing with syntax, semantics and inference whilst understanding a visual context. Boosted by impressive advancements in machine learning, the task of answering visually-grounded questions has experienced a renewed interest in recent years, to the point of becoming a research sub-field at the intersection of computational linguistics and computer vision. In this paper, we review current approaches to the problem which encompass the development of datasets, models and frameworks. We conduct our investigation from the perspective of the theoretical linguists; we extract from pioneering computational linguistic work a list of <i>desiderata</i> that we use to review current computational achievements. We acknowledge that impressive progress has been made to reconcile the engineering with the theoretical view. At the same time, we claim that further research is needed to get to a unified approach which jointly encompasses all the underlying linguistic problems. We conclude the paper by sharing our own desiderata for the future.</p>\",\"PeriodicalId\":47472,\"journal\":{\"name\":\"Language and Linguistics Compass\",\"volume\":\"15 6\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2021-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/lnc3.12417\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Language and Linguistics Compass\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/lnc3.12417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"LANGUAGE & LINGUISTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Language and Linguistics Compass","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/lnc3.12417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
Linguistic issues behind visual question answering
Answering a question that is grounded in an image is a crucial ability that requires understanding the question, the visual context, and their interaction at many linguistic levels: among others, semantics, syntax and pragmatics. As such, visually-grounded questions have long been of interest to theoretical linguists and cognitive scientists. Moreover, they have inspired the first attempts to computationally model natural language understanding, where pioneering systems were faced with the highly challenging task—still unsolved—of jointly dealing with syntax, semantics and inference whilst understanding a visual context. Boosted by impressive advancements in machine learning, the task of answering visually-grounded questions has experienced a renewed interest in recent years, to the point of becoming a research sub-field at the intersection of computational linguistics and computer vision. In this paper, we review current approaches to the problem which encompass the development of datasets, models and frameworks. We conduct our investigation from the perspective of the theoretical linguists; we extract from pioneering computational linguistic work a list of desiderata that we use to review current computational achievements. We acknowledge that impressive progress has been made to reconcile the engineering with the theoretical view. At the same time, we claim that further research is needed to get to a unified approach which jointly encompasses all the underlying linguistic problems. We conclude the paper by sharing our own desiderata for the future.
期刊介绍:
Unique in its range, Language and Linguistics Compass is an online-only journal publishing original, peer-reviewed surveys of current research from across the entire discipline. Language and Linguistics Compass publishes state-of-the-art reviews, supported by a comprehensive bibliography and accessible to an international readership. Language and Linguistics Compass is aimed at senior undergraduates, postgraduates and academics, and will provide a unique reference tool for researching essays, preparing lectures, writing a research proposal, or just keeping up with new developments in a specific area of interest.