{"title":"七氟醚对脑缺血再灌注损伤的保护作用:叙述性综述。","authors":"Tian-Yu Liang, Song-Yang Peng, Mian Ma, Hai-Ying Li, Zhong Wang, Gang Chen","doi":"10.4103/2045-9912.318860","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemia/reperfusion (I/R) injury is a phenomenon that the reperfusion of ischemic organs or tissues aggravates their damage, which poses a serious health threat and economic burden to the world. I/R gives rise to a series of physiological and pathological world, including inflammatory response, oxidative stress, brain edema, blood-brain barrier destruction, and neuronal death. Therefore, finding effective treatment measures is extremely important to the recovery of I/R patients and the improvement of long-term quality of life. Sevoflurane is an important volatile anesthetic which has been reported to reduce myocardial I/R damage and infarct size. Sevoflurane also has anti-inflammatory and neuroprotective effects. As reported sevoflurane treatment could reduce nerve function injury, cerebral infarction volume and the level of inflammatory factors. At the same time, there is evidence that sevoflurane can reduce neuron apoptosis and antioxidant stress. The protective effect of sevoflurane in brain injury has been proved to be existed in several aspects, so that a comprehensive understanding of its neuroprotective effect is helpful to exploit new treatment paths for I/R, provide clinicians with new clinical treatment decisions, contribute to the effective treatment of I/R patients and the improvement of quality of life after I/R healing.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"11 4","pages":"152-154"},"PeriodicalIF":3.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9d/1c/MGR-11-152.PMC8374460.pdf","citationCount":"19","resultStr":"{\"title\":\"Protective effects of sevoflurane in cerebral ischemia reperfusion injury: a narrative review.\",\"authors\":\"Tian-Yu Liang, Song-Yang Peng, Mian Ma, Hai-Ying Li, Zhong Wang, Gang Chen\",\"doi\":\"10.4103/2045-9912.318860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ischemia/reperfusion (I/R) injury is a phenomenon that the reperfusion of ischemic organs or tissues aggravates their damage, which poses a serious health threat and economic burden to the world. I/R gives rise to a series of physiological and pathological world, including inflammatory response, oxidative stress, brain edema, blood-brain barrier destruction, and neuronal death. Therefore, finding effective treatment measures is extremely important to the recovery of I/R patients and the improvement of long-term quality of life. Sevoflurane is an important volatile anesthetic which has been reported to reduce myocardial I/R damage and infarct size. Sevoflurane also has anti-inflammatory and neuroprotective effects. As reported sevoflurane treatment could reduce nerve function injury, cerebral infarction volume and the level of inflammatory factors. At the same time, there is evidence that sevoflurane can reduce neuron apoptosis and antioxidant stress. The protective effect of sevoflurane in brain injury has been proved to be existed in several aspects, so that a comprehensive understanding of its neuroprotective effect is helpful to exploit new treatment paths for I/R, provide clinicians with new clinical treatment decisions, contribute to the effective treatment of I/R patients and the improvement of quality of life after I/R healing.</p>\",\"PeriodicalId\":18559,\"journal\":{\"name\":\"Medical Gas Research\",\"volume\":\"11 4\",\"pages\":\"152-154\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9d/1c/MGR-11-152.PMC8374460.pdf\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Gas Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/2045-9912.318860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Gas Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/2045-9912.318860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Protective effects of sevoflurane in cerebral ischemia reperfusion injury: a narrative review.
Ischemia/reperfusion (I/R) injury is a phenomenon that the reperfusion of ischemic organs or tissues aggravates their damage, which poses a serious health threat and economic burden to the world. I/R gives rise to a series of physiological and pathological world, including inflammatory response, oxidative stress, brain edema, blood-brain barrier destruction, and neuronal death. Therefore, finding effective treatment measures is extremely important to the recovery of I/R patients and the improvement of long-term quality of life. Sevoflurane is an important volatile anesthetic which has been reported to reduce myocardial I/R damage and infarct size. Sevoflurane also has anti-inflammatory and neuroprotective effects. As reported sevoflurane treatment could reduce nerve function injury, cerebral infarction volume and the level of inflammatory factors. At the same time, there is evidence that sevoflurane can reduce neuron apoptosis and antioxidant stress. The protective effect of sevoflurane in brain injury has been proved to be existed in several aspects, so that a comprehensive understanding of its neuroprotective effect is helpful to exploit new treatment paths for I/R, provide clinicians with new clinical treatment decisions, contribute to the effective treatment of I/R patients and the improvement of quality of life after I/R healing.
期刊介绍:
Medical Gas Research is an open access journal which publishes basic, translational, and clinical research focusing on the neurobiology as well as multidisciplinary aspects of medical gas research and their applications to related disorders. The journal covers all areas of medical gas research, but also has several special sections. Authors can submit directly to these sections, whose peer-review process is overseen by our distinguished Section Editors: Inert gases - Edited by Xuejun Sun and Mark Coburn, Gasotransmitters - Edited by Atsunori Nakao and John Calvert, Oxygen and diving medicine - Edited by Daniel Rossignol and Ke Jian Liu, Anesthetic gases - Edited by Richard Applegate and Zhongcong Xie, Medical gas in other fields of biology - Edited by John Zhang. Medical gas is a large family including oxygen, hydrogen, carbon monoxide, carbon dioxide, nitrogen, xenon, hydrogen sulfide, nitrous oxide, carbon disulfide, argon, helium and other noble gases. These medical gases are used in multiple fields of clinical practice and basic science research including anesthesiology, hyperbaric oxygen medicine, diving medicine, internal medicine, emergency medicine, surgery, and many basic sciences disciplines such as physiology, pharmacology, biochemistry, microbiology and neurosciences. Due to the unique nature of medical gas practice, Medical Gas Research will serve as an information platform for educational and technological advances in the field of medical gas.