代谢工程中的模块化优化。

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Matthew Wong, Abinaya Badri, Christopher Gasparis, Georges Belfort, Mattheos Koffas
{"title":"代谢工程中的模块化优化。","authors":"Matthew Wong,&nbsp;Abinaya Badri,&nbsp;Christopher Gasparis,&nbsp;Georges Belfort,&nbsp;Mattheos Koffas","doi":"10.1080/10409238.2021.1937928","DOIUrl":null,"url":null,"abstract":"<p><p>There is an increasing demand for bioproducts produced by metabolically engineered microbes, such as pharmaceuticals, biofuels, biochemicals and other high value compounds. In order to meet this demand, modular optimization, the optimizing of subsections instead of the whole system, has been adopted to engineer cells to overproduce products. Research into modularity has focused on traditional approaches such as DNA, RNA, and protein-level modularity of intercellular machinery, by optimizing metabolic pathways for enhanced production. While research into these traditional approaches continues, limitations such as scale-up and time cost hold them back from wider use, while at the same time there is a shift to more novel methods, such as moving from episomal expression to chromosomal integration. Recently, nontraditional approaches such as co-culture systems and cell-free metabolic engineering (CFME) are being investigated for modular optimization. Co-culture modularity looks to optimally divide the metabolic burden between different hosts. CFME seeks to modularly optimize metabolic pathways <i>in vitro</i>, both speeding up the design of such systems and eliminating the issues associated with live hosts. In this review we will examine both traditional and nontraditional approaches for modular optimization, examining recent developments and discussing issues and emerging solutions for future research in metabolic engineering.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":" ","pages":"587-602"},"PeriodicalIF":6.2000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10409238.2021.1937928","citationCount":"4","resultStr":"{\"title\":\"Modular optimization in metabolic engineering.\",\"authors\":\"Matthew Wong,&nbsp;Abinaya Badri,&nbsp;Christopher Gasparis,&nbsp;Georges Belfort,&nbsp;Mattheos Koffas\",\"doi\":\"10.1080/10409238.2021.1937928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is an increasing demand for bioproducts produced by metabolically engineered microbes, such as pharmaceuticals, biofuels, biochemicals and other high value compounds. In order to meet this demand, modular optimization, the optimizing of subsections instead of the whole system, has been adopted to engineer cells to overproduce products. Research into modularity has focused on traditional approaches such as DNA, RNA, and protein-level modularity of intercellular machinery, by optimizing metabolic pathways for enhanced production. While research into these traditional approaches continues, limitations such as scale-up and time cost hold them back from wider use, while at the same time there is a shift to more novel methods, such as moving from episomal expression to chromosomal integration. Recently, nontraditional approaches such as co-culture systems and cell-free metabolic engineering (CFME) are being investigated for modular optimization. Co-culture modularity looks to optimally divide the metabolic burden between different hosts. CFME seeks to modularly optimize metabolic pathways <i>in vitro</i>, both speeding up the design of such systems and eliminating the issues associated with live hosts. In this review we will examine both traditional and nontraditional approaches for modular optimization, examining recent developments and discussing issues and emerging solutions for future research in metabolic engineering.</p>\",\"PeriodicalId\":10794,\"journal\":{\"name\":\"Critical Reviews in Biochemistry and Molecular Biology\",\"volume\":\" \",\"pages\":\"587-602\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10409238.2021.1937928\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10409238.2021.1937928\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/6/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biochemistry and Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10409238.2021.1937928","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

对代谢工程微生物生产的生物产品的需求日益增加,如药品、生物燃料、生物化学品和其他高价值化合物。为了满足这一需求,采用模块化优化,即分段优化而不是整个系统的优化,来设计细胞以过量生产产品。对模块化的研究主要集中在传统的方法上,如DNA、RNA和蛋白质水平的细胞间机制的模块化,通过优化代谢途径来提高生产。虽然对这些传统方法的研究仍在继续,但规模和时间成本等限制阻碍了它们的广泛应用,同时,人们正在转向更新颖的方法,例如从个体表达转向染色体整合。近年来,诸如共培养系统和无细胞代谢工程(CFME)等非传统方法正在被研究用于模块化优化。共培养模块化看起来可以在不同宿主之间最佳地分配代谢负担。CFME旨在模块化地优化体外代谢途径,既加快了系统的设计,又消除了与活体宿主相关的问题。在这篇综述中,我们将研究模块化优化的传统和非传统方法,研究最近的发展,讨论代谢工程未来研究的问题和新兴解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modular optimization in metabolic engineering.

There is an increasing demand for bioproducts produced by metabolically engineered microbes, such as pharmaceuticals, biofuels, biochemicals and other high value compounds. In order to meet this demand, modular optimization, the optimizing of subsections instead of the whole system, has been adopted to engineer cells to overproduce products. Research into modularity has focused on traditional approaches such as DNA, RNA, and protein-level modularity of intercellular machinery, by optimizing metabolic pathways for enhanced production. While research into these traditional approaches continues, limitations such as scale-up and time cost hold them back from wider use, while at the same time there is a shift to more novel methods, such as moving from episomal expression to chromosomal integration. Recently, nontraditional approaches such as co-culture systems and cell-free metabolic engineering (CFME) are being investigated for modular optimization. Co-culture modularity looks to optimally divide the metabolic burden between different hosts. CFME seeks to modularly optimize metabolic pathways in vitro, both speeding up the design of such systems and eliminating the issues associated with live hosts. In this review we will examine both traditional and nontraditional approaches for modular optimization, examining recent developments and discussing issues and emerging solutions for future research in metabolic engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.90
自引率
0.00%
发文量
6
期刊介绍: As the discipline of biochemistry and molecular biology have greatly advanced in the last quarter century, significant contributions have been made towards the advancement of general medicine, genetics, immunology, developmental biology, and biophysics. Investigators in a wide range of disciplines increasingly require an appreciation of the significance of current biochemical and molecular biology advances while, members of the biochemical and molecular biology community itself seek concise information on advances in areas remote from their own specialties. Critical Reviews in Biochemistry and Molecular Biology believes that well-written review articles prove an effective device for the integration and meaningful comprehension of vast, often contradictory, literature. Review articles also provide an opportunity for creative scholarship by synthesizing known facts, fruitful hypotheses, and new concepts. Accordingly, Critical Reviews in Biochemistry and Molecular Biology publishes high-quality reviews that organize, evaluate, and present the current status of high-impact, current issues in the area of biochemistry and molecular biology. Topics are selected on the advice of an advisory board of outstanding scientists, who also suggest authors of special competence. The topics chosen are sufficiently broad to interest a wide audience of readers, yet focused enough to be within the competence of a single author. Authors are chosen based on their activity in the field and their proven ability to produce a well-written publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信