心室的多物理计算模型

IF 17.2 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL
Azam Ahmad Bakir;Amr Al Abed;Nigel H. Lovell;Socrates Dokos
{"title":"心室的多物理计算模型","authors":"Azam Ahmad Bakir;Amr Al Abed;Nigel H. Lovell;Socrates Dokos","doi":"10.1109/RBME.2021.3093042","DOIUrl":null,"url":null,"abstract":"Development of cardiac multiphysics models has progressed significantly over the decades and simulations combining multiple physics interactions have become increasingly common. In this review, we summarise the progress in this field focusing on various approaches of integrating ventricular structures. electrophysiological properties, myocardial mechanics, as well as incorporating blood hemodynamics and the circulatory system. Common coupling approaches are discussed and compared, including the advantages and shortcomings of each. Currently used strategies for patient-specific implementations are highlighted and potential future improvements considered.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"15 ","pages":"309-324"},"PeriodicalIF":17.2000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multiphysics Computational Modelling of the Cardiac Ventricles\",\"authors\":\"Azam Ahmad Bakir;Amr Al Abed;Nigel H. Lovell;Socrates Dokos\",\"doi\":\"10.1109/RBME.2021.3093042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Development of cardiac multiphysics models has progressed significantly over the decades and simulations combining multiple physics interactions have become increasingly common. In this review, we summarise the progress in this field focusing on various approaches of integrating ventricular structures. electrophysiological properties, myocardial mechanics, as well as incorporating blood hemodynamics and the circulatory system. Common coupling approaches are discussed and compared, including the advantages and shortcomings of each. Currently used strategies for patient-specific implementations are highlighted and potential future improvements considered.\",\"PeriodicalId\":39235,\"journal\":{\"name\":\"IEEE Reviews in Biomedical Engineering\",\"volume\":\"15 \",\"pages\":\"309-324\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Reviews in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9468321/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9468321/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 2

摘要

几十年来,心脏多物理模型的发展取得了显著进展,结合多种物理相互作用的模拟越来越普遍。在这篇综述中,我们总结了该领域的进展,重点是整合心室结构的各种方法。电生理特性、心肌力学以及血液血液动力学和循环系统。讨论并比较了常用的耦合方法,包括每种方法的优点和缺点。强调了目前用于患者特定实施的策略,并考虑了未来的潜在改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiphysics Computational Modelling of the Cardiac Ventricles
Development of cardiac multiphysics models has progressed significantly over the decades and simulations combining multiple physics interactions have become increasingly common. In this review, we summarise the progress in this field focusing on various approaches of integrating ventricular structures. electrophysiological properties, myocardial mechanics, as well as incorporating blood hemodynamics and the circulatory system. Common coupling approaches are discussed and compared, including the advantages and shortcomings of each. Currently used strategies for patient-specific implementations are highlighted and potential future improvements considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Reviews in Biomedical Engineering
IEEE Reviews in Biomedical Engineering Engineering-Biomedical Engineering
CiteScore
31.70
自引率
0.60%
发文量
93
期刊介绍: IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信