Zhong Chen, Seta Stanbouly, Nina C Nishiyama, Xin Chen, Michael D Delp, Hongyu Qiu, Xiao W Mao, Charles Wang
{"title":"太空飞行减缓了小鼠视网膜中与DNA甲基组和转录组整体改变相协调的表观遗传时钟。","authors":"Zhong Chen, Seta Stanbouly, Nina C Nishiyama, Xin Chen, Michael D Delp, Hongyu Qiu, Xiao W Mao, Charles Wang","doi":"10.1093/pcmedi/pbab012","DOIUrl":null,"url":null,"abstract":"<p><p>Astronauts exhibit an assortment of clinical abnormalities in their eyes during long-duration spaceflight. The purpose of this study was to determine whether spaceflight induces epigenomic and transcriptomic reprogramming in the retina or alters the epigenetic clock. The mice were flown for 37 days in animal enclosure modules on the International Space Station; ground-based control animals were maintained under similar housing conditions. Mouse retinas were isolated and both DNA methylome and transcriptome were determined by deep sequencing. We found that a large number of genes were differentially methylated with spaceflight, whereas there were fewer differentially expressed genes at the transcriptome level. Several biological pathways involved in retinal diseases such as macular degeneration were significantly altered. Our results indicated that spaceflight decelerated the retinal epigenetic clock. This study demonstrates that spaceflight impacts the retina at the epigenomic and transcriptomic levels, and such changes could be involved in the etiology of eye-related disorders among astronauts.</p>","PeriodicalId":33608,"journal":{"name":"Precision Clinical Medicine","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/pcmedi/pbab012","citationCount":"6","resultStr":"{\"title\":\"Spaceflight decelerates the epigenetic clock orchestrated with a global alteration in DNA methylome and transcriptome in the mouse retina.\",\"authors\":\"Zhong Chen, Seta Stanbouly, Nina C Nishiyama, Xin Chen, Michael D Delp, Hongyu Qiu, Xiao W Mao, Charles Wang\",\"doi\":\"10.1093/pcmedi/pbab012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Astronauts exhibit an assortment of clinical abnormalities in their eyes during long-duration spaceflight. The purpose of this study was to determine whether spaceflight induces epigenomic and transcriptomic reprogramming in the retina or alters the epigenetic clock. The mice were flown for 37 days in animal enclosure modules on the International Space Station; ground-based control animals were maintained under similar housing conditions. Mouse retinas were isolated and both DNA methylome and transcriptome were determined by deep sequencing. We found that a large number of genes were differentially methylated with spaceflight, whereas there were fewer differentially expressed genes at the transcriptome level. Several biological pathways involved in retinal diseases such as macular degeneration were significantly altered. Our results indicated that spaceflight decelerated the retinal epigenetic clock. This study demonstrates that spaceflight impacts the retina at the epigenomic and transcriptomic levels, and such changes could be involved in the etiology of eye-related disorders among astronauts.</p>\",\"PeriodicalId\":33608,\"journal\":{\"name\":\"Precision Clinical Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2021-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/pcmedi/pbab012\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Clinical Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/pcmedi/pbab012\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Clinical Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/pcmedi/pbab012","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Spaceflight decelerates the epigenetic clock orchestrated with a global alteration in DNA methylome and transcriptome in the mouse retina.
Astronauts exhibit an assortment of clinical abnormalities in their eyes during long-duration spaceflight. The purpose of this study was to determine whether spaceflight induces epigenomic and transcriptomic reprogramming in the retina or alters the epigenetic clock. The mice were flown for 37 days in animal enclosure modules on the International Space Station; ground-based control animals were maintained under similar housing conditions. Mouse retinas were isolated and both DNA methylome and transcriptome were determined by deep sequencing. We found that a large number of genes were differentially methylated with spaceflight, whereas there were fewer differentially expressed genes at the transcriptome level. Several biological pathways involved in retinal diseases such as macular degeneration were significantly altered. Our results indicated that spaceflight decelerated the retinal epigenetic clock. This study demonstrates that spaceflight impacts the retina at the epigenomic and transcriptomic levels, and such changes could be involved in the etiology of eye-related disorders among astronauts.
期刊介绍:
Precision Clinical Medicine (PCM) is an international, peer-reviewed, open access journal that provides timely publication of original research articles, case reports, reviews, editorials, and perspectives across the spectrum of precision medicine. The journal's mission is to deliver new theories, methods, and evidence that enhance disease diagnosis, treatment, prevention, and prognosis, thereby establishing a vital communication platform for clinicians and researchers that has the potential to transform medical practice. PCM encompasses all facets of precision medicine, which involves personalized approaches to diagnosis, treatment, and prevention, tailored to individual patients or patient subgroups based on their unique genetic, phenotypic, or psychosocial profiles. The clinical conditions addressed by the journal include a wide range of areas such as cancer, infectious diseases, inherited diseases, complex diseases, and rare diseases.