{"title":"基于动态增强磁共振成像的纹理特征与形态分类的结合应用:鉴别具有高阴性预测值的乳腺良恶性肿块。","authors":"Shigeharu Ohyu, Mitsuhiro Tozaki, Michiro Sasaki, Hisae Chiba, Qilin Xiao, Yasuko Fujisawa, Yoshiaki Sagara","doi":"10.2463/mrms.mp.2020-0160","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We evaluated the diagnostic performance of the texture features of dynamic contrast-enhanced (DCE) MRI for breast cancer diagnosis in which the discriminator was optimized, so that the specificity was maximized via the restriction of the negative predictive value (NPV) to greater than 98%.</p><p><strong>Methods: </strong>Histologically proven benign and malignant mass lesions of DCE MRI were enrolled retrospectively. Training and testing sets consist of 166 masses (49 benign, 117 malignant) and 50 masses (15 benign, 35 malignant), respectively. Lesions were classified via MRI review by a radiologist into 4 shape types: smooth (S-type, 34 masses in training set and 8 masses in testing set), irregular without rim-enhancement (I-type, 60 in training and 14 in testing), irregular with rim-enhancement (R-type, 56 in training and 22 in testing), and spicula (16 in training and 6 in testing). Spicula were immediately classified as malignant. For the remaining masses, 298 texture features were calculated using a parametric map of DCE MRI in 3D mass regions. Masses were classified into malignant or benign using two thresholds on a feature pair. On the training set, several feature pairs and their thresholds were selected and optimized for each mass shape type to maximize specificity with the restriction of NPV > 98%. NPV and specificity were computed using the testing set by comparison with histopathologic results and averaged on the selected feature pairs.</p><p><strong>Results: </strong>In the training set, 27, 12, and 15 texture feature pairs are selected for S-type, I-type, and R-type masses, respectively, and thresholds are determined. In the testing set, average NPV and specificity using the selected texture features were 99.0% and 45.2%, respectively, compared to the NPV (85.7%) and specificity (40.0%) in visually assessed MRI category-based diagnosis.</p><p><strong>Conclusion: </strong>We, therefore, suggest that the NPV of our texture-based features method described performs similarly to or greater than the NPV of the MRI category-based diagnosis.</p>","PeriodicalId":18119,"journal":{"name":"Magnetic Resonance in Medical Sciences","volume":"21 3","pages":"485-498"},"PeriodicalIF":2.5000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/cf/79/mrms-21-485.PMC9316135.pdf","citationCount":"3","resultStr":"{\"title\":\"Combined Use of Texture Features and Morphological Classification Based on Dynamic Contrast-enhanced MR Imaging: Differentiating Benign and Malignant Breast Masses with High Negative Predictive Value.\",\"authors\":\"Shigeharu Ohyu, Mitsuhiro Tozaki, Michiro Sasaki, Hisae Chiba, Qilin Xiao, Yasuko Fujisawa, Yoshiaki Sagara\",\"doi\":\"10.2463/mrms.mp.2020-0160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>We evaluated the diagnostic performance of the texture features of dynamic contrast-enhanced (DCE) MRI for breast cancer diagnosis in which the discriminator was optimized, so that the specificity was maximized via the restriction of the negative predictive value (NPV) to greater than 98%.</p><p><strong>Methods: </strong>Histologically proven benign and malignant mass lesions of DCE MRI were enrolled retrospectively. Training and testing sets consist of 166 masses (49 benign, 117 malignant) and 50 masses (15 benign, 35 malignant), respectively. Lesions were classified via MRI review by a radiologist into 4 shape types: smooth (S-type, 34 masses in training set and 8 masses in testing set), irregular without rim-enhancement (I-type, 60 in training and 14 in testing), irregular with rim-enhancement (R-type, 56 in training and 22 in testing), and spicula (16 in training and 6 in testing). Spicula were immediately classified as malignant. For the remaining masses, 298 texture features were calculated using a parametric map of DCE MRI in 3D mass regions. Masses were classified into malignant or benign using two thresholds on a feature pair. On the training set, several feature pairs and their thresholds were selected and optimized for each mass shape type to maximize specificity with the restriction of NPV > 98%. NPV and specificity were computed using the testing set by comparison with histopathologic results and averaged on the selected feature pairs.</p><p><strong>Results: </strong>In the training set, 27, 12, and 15 texture feature pairs are selected for S-type, I-type, and R-type masses, respectively, and thresholds are determined. In the testing set, average NPV and specificity using the selected texture features were 99.0% and 45.2%, respectively, compared to the NPV (85.7%) and specificity (40.0%) in visually assessed MRI category-based diagnosis.</p><p><strong>Conclusion: </strong>We, therefore, suggest that the NPV of our texture-based features method described performs similarly to or greater than the NPV of the MRI category-based diagnosis.</p>\",\"PeriodicalId\":18119,\"journal\":{\"name\":\"Magnetic Resonance in Medical Sciences\",\"volume\":\"21 3\",\"pages\":\"485-498\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/cf/79/mrms-21-485.PMC9316135.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance in Medical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2463/mrms.mp.2020-0160\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/6/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2463/mrms.mp.2020-0160","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Combined Use of Texture Features and Morphological Classification Based on Dynamic Contrast-enhanced MR Imaging: Differentiating Benign and Malignant Breast Masses with High Negative Predictive Value.
Purpose: We evaluated the diagnostic performance of the texture features of dynamic contrast-enhanced (DCE) MRI for breast cancer diagnosis in which the discriminator was optimized, so that the specificity was maximized via the restriction of the negative predictive value (NPV) to greater than 98%.
Methods: Histologically proven benign and malignant mass lesions of DCE MRI were enrolled retrospectively. Training and testing sets consist of 166 masses (49 benign, 117 malignant) and 50 masses (15 benign, 35 malignant), respectively. Lesions were classified via MRI review by a radiologist into 4 shape types: smooth (S-type, 34 masses in training set and 8 masses in testing set), irregular without rim-enhancement (I-type, 60 in training and 14 in testing), irregular with rim-enhancement (R-type, 56 in training and 22 in testing), and spicula (16 in training and 6 in testing). Spicula were immediately classified as malignant. For the remaining masses, 298 texture features were calculated using a parametric map of DCE MRI in 3D mass regions. Masses were classified into malignant or benign using two thresholds on a feature pair. On the training set, several feature pairs and their thresholds were selected and optimized for each mass shape type to maximize specificity with the restriction of NPV > 98%. NPV and specificity were computed using the testing set by comparison with histopathologic results and averaged on the selected feature pairs.
Results: In the training set, 27, 12, and 15 texture feature pairs are selected for S-type, I-type, and R-type masses, respectively, and thresholds are determined. In the testing set, average NPV and specificity using the selected texture features were 99.0% and 45.2%, respectively, compared to the NPV (85.7%) and specificity (40.0%) in visually assessed MRI category-based diagnosis.
Conclusion: We, therefore, suggest that the NPV of our texture-based features method described performs similarly to or greater than the NPV of the MRI category-based diagnosis.
期刊介绍:
Magnetic Resonance in Medical Sciences (MRMS or Magn
Reson Med Sci) is an international journal pursuing the
publication of original articles contributing to the progress
of magnetic resonance in the field of biomedical sciences
including technical developments and clinical applications.
MRMS is an official journal of the Japanese Society for
Magnetic Resonance in Medicine (JSMRM).