嗜温蓝藻菌中耐热藻蓝蛋白的产生

IF 3.7 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Anton Puzorjov , Katherine E. Dunn , Alistair J. McCormick
{"title":"嗜温蓝藻菌中耐热藻蓝蛋白的产生","authors":"Anton Puzorjov ,&nbsp;Katherine E. Dunn ,&nbsp;Alistair J. McCormick","doi":"10.1016/j.mec.2021.e00175","DOIUrl":null,"url":null,"abstract":"<div><p>Phycocyanin (PC) is a soluble phycobiliprotein found within the light-harvesting phycobilisome complex of cyanobacteria and red algae, and is considered a high-value product due to its brilliant blue colour and fluorescent properties. However, commercially available PC has a relatively low temperature stability. Thermophilic species produce more thermostable variants of PC, but are challenging and energetically expensive to cultivate. Here, we show that the PC operon from the thermophilic cyanobacterium <em>Thermosynechococcus elongatus</em> BP-1 (<em>cpcBACD</em>) is functional in the mesophile <em>Synechocystis</em> sp. PCC 6803. Expression of <em>cpcBACD</em> in an ‘Olive’ mutant strain of <em>Synechocystis</em> lacking endogenous PC resulted in high yields of thermostable PC (112 ± 1 mg g<sup>−1</sup> DW) comparable to that of endogenous PC in wild-type cells. Heterologous PC also improved the growth of the Olive mutant, which was further supported by evidence of a functional interaction with the endogenous allophycocyanin core of the phycobilisome complex. The thermostability properties of the heterologous PC were comparable to those of PC from <em>T. elongatus</em>, and could be purified from the Olive mutant using a low-cost heat treatment method. Finally, we developed a scalable model to calculate the energetic benefits of producing PC from <em>T. elongatus</em> in <em>Synechocystis</em> cultures. Our model showed that the higher yields and lower cultivation temperatures of <em>Synechocystis</em> resulted in a 3.5-fold increase in energy efficiency compared to <em>T. elongatus</em>, indicating that producing thermostable PC in non-native hosts is a cost-effective strategy for scaling to commercial production.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mec.2021.e00175","citationCount":"12","resultStr":"{\"title\":\"Production of thermostable phycocyanin in a mesophilic cyanobacterium\",\"authors\":\"Anton Puzorjov ,&nbsp;Katherine E. Dunn ,&nbsp;Alistair J. McCormick\",\"doi\":\"10.1016/j.mec.2021.e00175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Phycocyanin (PC) is a soluble phycobiliprotein found within the light-harvesting phycobilisome complex of cyanobacteria and red algae, and is considered a high-value product due to its brilliant blue colour and fluorescent properties. However, commercially available PC has a relatively low temperature stability. Thermophilic species produce more thermostable variants of PC, but are challenging and energetically expensive to cultivate. Here, we show that the PC operon from the thermophilic cyanobacterium <em>Thermosynechococcus elongatus</em> BP-1 (<em>cpcBACD</em>) is functional in the mesophile <em>Synechocystis</em> sp. PCC 6803. Expression of <em>cpcBACD</em> in an ‘Olive’ mutant strain of <em>Synechocystis</em> lacking endogenous PC resulted in high yields of thermostable PC (112 ± 1 mg g<sup>−1</sup> DW) comparable to that of endogenous PC in wild-type cells. Heterologous PC also improved the growth of the Olive mutant, which was further supported by evidence of a functional interaction with the endogenous allophycocyanin core of the phycobilisome complex. The thermostability properties of the heterologous PC were comparable to those of PC from <em>T. elongatus</em>, and could be purified from the Olive mutant using a low-cost heat treatment method. Finally, we developed a scalable model to calculate the energetic benefits of producing PC from <em>T. elongatus</em> in <em>Synechocystis</em> cultures. Our model showed that the higher yields and lower cultivation temperatures of <em>Synechocystis</em> resulted in a 3.5-fold increase in energy efficiency compared to <em>T. elongatus</em>, indicating that producing thermostable PC in non-native hosts is a cost-effective strategy for scaling to commercial production.</p></div>\",\"PeriodicalId\":18695,\"journal\":{\"name\":\"Metabolic Engineering Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mec.2021.e00175\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic Engineering Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214030121000158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic Engineering Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214030121000158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 12

摘要

藻蓝蛋白(PC)是一种可溶性藻胆蛋白,存在于蓝藻和红藻的光收集藻胆体复合体中,由于其明亮的蓝色和荧光特性而被认为是一种高价值的产品。然而,商用PC具有相对较低的温度稳定性。嗜热物种产生更耐热的PC变种,但具有挑战性和能量昂贵的培养。本研究表明,来自嗜热蓝藻热共生球菌(Thermosynechococcus elongatus) BP-1 (cpcBACD)的PC操纵子在嗜热共生菌(Synechocystis sp. PCC 6803)中具有功能。在缺乏内源性PC的聚囊菌' Olive '突变株中,cpcBACD的表达导致耐热PC的高产(112±1 mg g−1 DW),与野生型细胞中的内源性PC相当。外源PC也促进了橄榄突变体的生长,这进一步得到了与藻胆异构体的内源异藻蓝蛋白核心的功能相互作用的证据的支持。外源PC的热稳定性与长叶葡萄的PC相当,可以用低成本的热处理方法从橄榄突变体中纯化得到。最后,我们建立了一个可扩展的模型来计算在聚囊藻培养物中从长形霉中生产PC的能量效益。我们的模型显示,与T. elongatus相比,更高的产量和更低的栽培温度导致能量效率提高3.5倍,这表明在非本地宿主中生产耐热PC是一种成本效益高的规模化商业生产策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Production of thermostable phycocyanin in a mesophilic cyanobacterium

Production of thermostable phycocyanin in a mesophilic cyanobacterium

Production of thermostable phycocyanin in a mesophilic cyanobacterium

Production of thermostable phycocyanin in a mesophilic cyanobacterium

Phycocyanin (PC) is a soluble phycobiliprotein found within the light-harvesting phycobilisome complex of cyanobacteria and red algae, and is considered a high-value product due to its brilliant blue colour and fluorescent properties. However, commercially available PC has a relatively low temperature stability. Thermophilic species produce more thermostable variants of PC, but are challenging and energetically expensive to cultivate. Here, we show that the PC operon from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 (cpcBACD) is functional in the mesophile Synechocystis sp. PCC 6803. Expression of cpcBACD in an ‘Olive’ mutant strain of Synechocystis lacking endogenous PC resulted in high yields of thermostable PC (112 ± 1 mg g−1 DW) comparable to that of endogenous PC in wild-type cells. Heterologous PC also improved the growth of the Olive mutant, which was further supported by evidence of a functional interaction with the endogenous allophycocyanin core of the phycobilisome complex. The thermostability properties of the heterologous PC were comparable to those of PC from T. elongatus, and could be purified from the Olive mutant using a low-cost heat treatment method. Finally, we developed a scalable model to calculate the energetic benefits of producing PC from T. elongatus in Synechocystis cultures. Our model showed that the higher yields and lower cultivation temperatures of Synechocystis resulted in a 3.5-fold increase in energy efficiency compared to T. elongatus, indicating that producing thermostable PC in non-native hosts is a cost-effective strategy for scaling to commercial production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metabolic Engineering Communications
Metabolic Engineering Communications Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
13.30
自引率
1.90%
发文量
22
审稿时长
18 weeks
期刊介绍: Metabolic Engineering Communications, a companion title to Metabolic Engineering (MBE), is devoted to publishing original research in the areas of metabolic engineering, synthetic biology, computational biology and systems biology for problems related to metabolism and the engineering of metabolism for the production of fuels, chemicals, and pharmaceuticals. The journal will carry articles on the design, construction, and analysis of biological systems ranging from pathway components to biological complexes and genomes (including genomic, analytical and bioinformatics methods) in suitable host cells to allow them to produce novel compounds of industrial and medical interest. Demonstrations of regulatory designs and synthetic circuits that alter the performance of biochemical pathways and cellular processes will also be presented. Metabolic Engineering Communications complements MBE by publishing articles that are either shorter than those published in the full journal, or which describe key elements of larger metabolic engineering efforts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信