spec1在小鼠着床前发育中的表达模式和生物学功能

IF 1 4区 生物学 Q4 DEVELOPMENTAL BIOLOGY
Seulah Lee, Inchul Choi
{"title":"spec1在小鼠着床前发育中的表达模式和生物学功能","authors":"Seulah Lee,&nbsp;Inchul Choi","doi":"10.1016/j.gep.2021.119196","DOIUrl":null,"url":null,"abstract":"<div><p>Two unique features occur during preimplantation embryo<span> development: 1) initiation of calcium-dependent adhesion and establishment of apicobasal polarity in the morula<span>, and 2) formation of the blastocoel by establishment of tight junctions (TJs), ion channels, and water channels in the outer blastomeres<span><span><span>. Although several key genes involved in morula and blastocyst formation have been identified, most remain unknown. </span>Sperm antigen<span> with calponin<span> homology and coiled-coil domains 1(SPECC1) is highly expressed in testis and tumor cells, and is involved in diverse cellular processes such as ribosome biogenesis, rRNA transcription, mitosis, cell growth, and apoptosis in tumor cells. However, spatiotemporal expressions of Specc1 during mouse </span></span></span>preimplantation<span> development have not yet been investigated. Here, we examined the expression patterns of Specc1 using qRT-PCR and immunocytochemistry<span><span>, and its biological function using siRNA injection into 1-cell zygotes. Specc1 was detectable throughout preimplantation development and markedly increased from the morula stage onwards. It was particularly observed in trophectoderm cells, rather than the </span>inner cell mass of blastocyst. Maternal and zygotic Specc1 transcripts were abolished using RNA interference. There were no significant differences in development between Specc1 knock down (KD) and control embryos until the morula stage, but was significantly reduced blastocyst development and increased tight junction permeability in KD embryos, as assessed by FITC uptake. In summary, elevated expression of Specc1 in the morula and blastocyst may affect blastocyst formation, including tight junction complex during the morula to blastocyst transition.</span></span></span></span></span></p></div>","PeriodicalId":55598,"journal":{"name":"Gene Expression Patterns","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.gep.2021.119196","citationCount":"2","resultStr":"{\"title\":\"Expression patterns and biological function of Specc1 during mouse preimplantation development\",\"authors\":\"Seulah Lee,&nbsp;Inchul Choi\",\"doi\":\"10.1016/j.gep.2021.119196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two unique features occur during preimplantation embryo<span> development: 1) initiation of calcium-dependent adhesion and establishment of apicobasal polarity in the morula<span>, and 2) formation of the blastocoel by establishment of tight junctions (TJs), ion channels, and water channels in the outer blastomeres<span><span><span>. Although several key genes involved in morula and blastocyst formation have been identified, most remain unknown. </span>Sperm antigen<span> with calponin<span> homology and coiled-coil domains 1(SPECC1) is highly expressed in testis and tumor cells, and is involved in diverse cellular processes such as ribosome biogenesis, rRNA transcription, mitosis, cell growth, and apoptosis in tumor cells. However, spatiotemporal expressions of Specc1 during mouse </span></span></span>preimplantation<span> development have not yet been investigated. Here, we examined the expression patterns of Specc1 using qRT-PCR and immunocytochemistry<span><span>, and its biological function using siRNA injection into 1-cell zygotes. Specc1 was detectable throughout preimplantation development and markedly increased from the morula stage onwards. It was particularly observed in trophectoderm cells, rather than the </span>inner cell mass of blastocyst. Maternal and zygotic Specc1 transcripts were abolished using RNA interference. There were no significant differences in development between Specc1 knock down (KD) and control embryos until the morula stage, but was significantly reduced blastocyst development and increased tight junction permeability in KD embryos, as assessed by FITC uptake. In summary, elevated expression of Specc1 in the morula and blastocyst may affect blastocyst formation, including tight junction complex during the morula to blastocyst transition.</span></span></span></span></span></p></div>\",\"PeriodicalId\":55598,\"journal\":{\"name\":\"Gene Expression Patterns\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.gep.2021.119196\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gene Expression Patterns\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567133X21000314\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene Expression Patterns","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567133X21000314","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

着床前胚胎发育过程中出现了两个独特的特征:1)桑葚胚中钙依赖性黏附的启动和尖基部极性的建立;2)囊胚腔的形成是通过在囊胚球外部建立紧密连接(TJs)、离子通道和水通道来实现的。虽然已经确定了几个与桑葚胚和囊胚形成有关的关键基因,但大多数基因仍然未知。具有钙钙蛋白同源性和螺旋结构域1的精子抗原(SPECC1)在睾丸和肿瘤细胞中高度表达,参与肿瘤细胞核糖体生物发生、rRNA转录、有丝分裂、细胞生长和凋亡等多种细胞过程。然而,Specc1在小鼠着床前发育过程中的时空表达尚未被研究。在这里,我们使用qRT-PCR和免疫细胞化学检测了Specc1的表达模式,并使用siRNA注射到1细胞受精卵中检测了其生物学功能。Specc1在着床前发育过程中均可检测到,并从桑葚胚期开始显著增加。特别是在滋养外胚层细胞中,而不是在囊胚的内细胞群中。利用RNA干扰消除母体和合子的spec1转录本。直到桑葚胚期,Specc1敲低(KD)和对照胚胎之间的发育没有显著差异,但通过FITC摄取评估,KD胚胎的囊胚发育显著减少,紧密连接通透性增加。综上所述,Specc1在桑葚胚和囊胚中的表达升高可能影响囊胚的形成,包括桑葚胚向囊胚转变过程中的紧密连接复合体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expression patterns and biological function of Specc1 during mouse preimplantation development

Two unique features occur during preimplantation embryo development: 1) initiation of calcium-dependent adhesion and establishment of apicobasal polarity in the morula, and 2) formation of the blastocoel by establishment of tight junctions (TJs), ion channels, and water channels in the outer blastomeres. Although several key genes involved in morula and blastocyst formation have been identified, most remain unknown. Sperm antigen with calponin homology and coiled-coil domains 1(SPECC1) is highly expressed in testis and tumor cells, and is involved in diverse cellular processes such as ribosome biogenesis, rRNA transcription, mitosis, cell growth, and apoptosis in tumor cells. However, spatiotemporal expressions of Specc1 during mouse preimplantation development have not yet been investigated. Here, we examined the expression patterns of Specc1 using qRT-PCR and immunocytochemistry, and its biological function using siRNA injection into 1-cell zygotes. Specc1 was detectable throughout preimplantation development and markedly increased from the morula stage onwards. It was particularly observed in trophectoderm cells, rather than the inner cell mass of blastocyst. Maternal and zygotic Specc1 transcripts were abolished using RNA interference. There were no significant differences in development between Specc1 knock down (KD) and control embryos until the morula stage, but was significantly reduced blastocyst development and increased tight junction permeability in KD embryos, as assessed by FITC uptake. In summary, elevated expression of Specc1 in the morula and blastocyst may affect blastocyst formation, including tight junction complex during the morula to blastocyst transition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gene Expression Patterns
Gene Expression Patterns 生物-发育生物学
CiteScore
2.30
自引率
0.00%
发文量
42
审稿时长
35 days
期刊介绍: Gene Expression Patterns is devoted to the rapid publication of high quality studies of gene expression in development. Studies using cell culture are also suitable if clearly relevant to development, e.g., analysis of key regulatory genes or of gene sets in the maintenance or differentiation of stem cells. Key areas of interest include: -In-situ studies such as expression patterns of important or interesting genes at all levels, including transcription and protein expression -Temporal studies of large gene sets during development -Transgenic studies to study cell lineage in tissue formation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信