{"title":"胞浆PINK1通过磷酸化翻译延伸因子eEF1A1调控蛋白酶体应激过程中的蛋白翻译。","authors":"Siyue Qin, Ling Ye, Youshi Zheng, Ju Gao","doi":"10.1002/1873-3468.14030","DOIUrl":null,"url":null,"abstract":"<p><p>Mutations in PINK1 (PTEN-induced putative kinase 1) are associated with autosomal recessive early-onset Parkinson's disease. Full-length PINK1 (PINK1-l) has been extensively studied in mitophagy; however, the functions of the short form of PINK1 (PINK1-s) remain poorly understood. Here, we report that PINK1-s is recruited to ribosome fractions after short-term inhibition of proteasomes. The expression of PINK1-s greatly inhibits protein synthesis even without proteasomal stress. Mechanistically, PINK1-s phosphorylates the translation elongation factor eEF1A1 during proteasome inhibition. The expression of the phosphorylation mimic mutation eEF1A1S396E rescues protein synthesis defects and cell viability caused by PINK1 knockout. These findings implicate an important role for PINK1-s in protecting cells against proteasome stress through inhibiting protein synthesis.</p>","PeriodicalId":50454,"journal":{"name":"FEBS Letters","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/1873-3468.14030","citationCount":"8","resultStr":"{\"title\":\"Cytosolic PINK1 orchestrates protein translation during proteasomal stress by phosphorylating the translation elongation factor eEF1A1.\",\"authors\":\"Siyue Qin, Ling Ye, Youshi Zheng, Ju Gao\",\"doi\":\"10.1002/1873-3468.14030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mutations in PINK1 (PTEN-induced putative kinase 1) are associated with autosomal recessive early-onset Parkinson's disease. Full-length PINK1 (PINK1-l) has been extensively studied in mitophagy; however, the functions of the short form of PINK1 (PINK1-s) remain poorly understood. Here, we report that PINK1-s is recruited to ribosome fractions after short-term inhibition of proteasomes. The expression of PINK1-s greatly inhibits protein synthesis even without proteasomal stress. Mechanistically, PINK1-s phosphorylates the translation elongation factor eEF1A1 during proteasome inhibition. The expression of the phosphorylation mimic mutation eEF1A1S396E rescues protein synthesis defects and cell viability caused by PINK1 knockout. These findings implicate an important role for PINK1-s in protecting cells against proteasome stress through inhibiting protein synthesis.</p>\",\"PeriodicalId\":50454,\"journal\":{\"name\":\"FEBS Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/1873-3468.14030\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/1873-3468.14030\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/1873-3468.14030","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Cytosolic PINK1 orchestrates protein translation during proteasomal stress by phosphorylating the translation elongation factor eEF1A1.
Mutations in PINK1 (PTEN-induced putative kinase 1) are associated with autosomal recessive early-onset Parkinson's disease. Full-length PINK1 (PINK1-l) has been extensively studied in mitophagy; however, the functions of the short form of PINK1 (PINK1-s) remain poorly understood. Here, we report that PINK1-s is recruited to ribosome fractions after short-term inhibition of proteasomes. The expression of PINK1-s greatly inhibits protein synthesis even without proteasomal stress. Mechanistically, PINK1-s phosphorylates the translation elongation factor eEF1A1 during proteasome inhibition. The expression of the phosphorylation mimic mutation eEF1A1S396E rescues protein synthesis defects and cell viability caused by PINK1 knockout. These findings implicate an important role for PINK1-s in protecting cells against proteasome stress through inhibiting protein synthesis.
期刊介绍:
FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.