放手:从酵母液泡中分离肌球蛋白V的机制。

IF 1.8 4区 生物学 Q3 GENETICS & HEREDITY
Current Genetics Pub Date : 2021-12-01 Epub Date: 2021-06-10 DOI:10.1007/s00294-021-01195-y
Sara Wong, Lois S Weisman
{"title":"放手:从酵母液泡中分离肌球蛋白V的机制。","authors":"Sara Wong,&nbsp;Lois S Weisman","doi":"10.1007/s00294-021-01195-y","DOIUrl":null,"url":null,"abstract":"<p><p>A major question in cell biology is, how are organelles and macromolecular machines moved within a cell? The delivery of cargoes to the right place at the right time within a cell is critical to cellular health. Failure to do so is often catastrophic for animal physiology and results in diseases of the gut, brain, and skin. In budding yeast, a myosin V motor, Myo2, moves cellular materials from the mother cell into the growing daughter bud. Myo2-based transport ensures that cellular contents are shared during cell division. During transport, Myo2 is often linked to its cargo via cargo-specific adaptor proteins. This simple organism thus serves as a powerful tool to study how myosin V moves cargo, such as organelles. Some critical questions include how myosin V moves along the actin cytoskeleton, or how myosin V attaches to cargo in the mother. Other critical questions include how the cargo is released from myosin V when it reaches its final destination in the bud. Here, we review the mechanisms that regulate the vacuole-specific adaptor protein, Vac17, to ensure that Myo2 delivers the vacuole to the bud and releases it at the right place and the right time. Recent studies have revealed that Vac17 is regulated by ubiquitylation and phosphorylation events that coordinate its degradation and the detachment of the vacuole from Myo2. Thus, multiple post-translational modifications tightly coordinate cargo delivery with cellular events. It is tempting to speculate that similar mechanisms regulate other cargoes and molecular motors.</p>","PeriodicalId":10918,"journal":{"name":"Current Genetics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00294-021-01195-y","citationCount":"1","resultStr":"{\"title\":\"Let it go: mechanisms that detach myosin V from the yeast vacuole.\",\"authors\":\"Sara Wong,&nbsp;Lois S Weisman\",\"doi\":\"10.1007/s00294-021-01195-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A major question in cell biology is, how are organelles and macromolecular machines moved within a cell? The delivery of cargoes to the right place at the right time within a cell is critical to cellular health. Failure to do so is often catastrophic for animal physiology and results in diseases of the gut, brain, and skin. In budding yeast, a myosin V motor, Myo2, moves cellular materials from the mother cell into the growing daughter bud. Myo2-based transport ensures that cellular contents are shared during cell division. During transport, Myo2 is often linked to its cargo via cargo-specific adaptor proteins. This simple organism thus serves as a powerful tool to study how myosin V moves cargo, such as organelles. Some critical questions include how myosin V moves along the actin cytoskeleton, or how myosin V attaches to cargo in the mother. Other critical questions include how the cargo is released from myosin V when it reaches its final destination in the bud. Here, we review the mechanisms that regulate the vacuole-specific adaptor protein, Vac17, to ensure that Myo2 delivers the vacuole to the bud and releases it at the right place and the right time. Recent studies have revealed that Vac17 is regulated by ubiquitylation and phosphorylation events that coordinate its degradation and the detachment of the vacuole from Myo2. Thus, multiple post-translational modifications tightly coordinate cargo delivery with cellular events. It is tempting to speculate that similar mechanisms regulate other cargoes and molecular motors.</p>\",\"PeriodicalId\":10918,\"journal\":{\"name\":\"Current Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00294-021-01195-y\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00294-021-01195-y\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/6/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00294-021-01195-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 1

摘要

细胞生物学的一个主要问题是,细胞器和大分子机器是如何在细胞内移动的?在细胞内正确的时间将物质运送到正确的位置对细胞健康至关重要。如果做不到这一点,通常会对动物生理造成灾难性的影响,并导致肠道、大脑和皮肤疾病。在出芽的酵母中,肌凝蛋白V马达Myo2将细胞物质从母细胞转移到正在生长的子细胞中。肌氧基转运确保细胞分裂过程中细胞内容物共享。在运输过程中,Myo2通常通过货物特异性适配蛋白与货物相连。因此,这种简单的有机体可以作为研究肌凝蛋白V如何移动诸如细胞器之类的货物的有力工具。一些关键的问题包括肌凝蛋白V如何沿着肌动蛋白细胞骨架移动,或者肌凝蛋白V如何附着在母体中的货物上。其他关键问题包括,当货物在萌芽状态到达最终目的地时,是如何从肌凝蛋白V中释放出来的。在这里,我们回顾了调节液泡特异性接头蛋白Vac17的机制,以确保Myo2将液泡传递到芽并在正确的地点和时间释放液泡。最近的研究表明,Vac17受泛素化和磷酸化事件的调节,这些事件协调了Vac17的降解和液泡与Myo2的分离。因此,多种翻译后修饰与细胞事件紧密协调货物递送。人们很容易猜测,类似的机制也在调节着其他货物和分子马达。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Let it go: mechanisms that detach myosin V from the yeast vacuole.

A major question in cell biology is, how are organelles and macromolecular machines moved within a cell? The delivery of cargoes to the right place at the right time within a cell is critical to cellular health. Failure to do so is often catastrophic for animal physiology and results in diseases of the gut, brain, and skin. In budding yeast, a myosin V motor, Myo2, moves cellular materials from the mother cell into the growing daughter bud. Myo2-based transport ensures that cellular contents are shared during cell division. During transport, Myo2 is often linked to its cargo via cargo-specific adaptor proteins. This simple organism thus serves as a powerful tool to study how myosin V moves cargo, such as organelles. Some critical questions include how myosin V moves along the actin cytoskeleton, or how myosin V attaches to cargo in the mother. Other critical questions include how the cargo is released from myosin V when it reaches its final destination in the bud. Here, we review the mechanisms that regulate the vacuole-specific adaptor protein, Vac17, to ensure that Myo2 delivers the vacuole to the bud and releases it at the right place and the right time. Recent studies have revealed that Vac17 is regulated by ubiquitylation and phosphorylation events that coordinate its degradation and the detachment of the vacuole from Myo2. Thus, multiple post-translational modifications tightly coordinate cargo delivery with cellular events. It is tempting to speculate that similar mechanisms regulate other cargoes and molecular motors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Genetics
Current Genetics 生物-遗传学
CiteScore
6.00
自引率
0.00%
发文量
34
审稿时长
1 months
期刊介绍: Current Genetics publishes genetic, genomic, molecular and systems-level analysis of eukaryotic and prokaryotic microorganisms and cell organelles. All articles are peer-reviewed. The journal welcomes submissions employing any type of research approach, be it analytical (aiming at a better understanding), applied (aiming at practical applications), synthetic or theoretical. Current Genetics no longer accepts manuscripts describing the genome sequence of mitochondria/chloroplast of a small number of species. Manuscripts covering sequence comparisons and analyses that include a large number of species will still be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信