Mariana Blagojevic, Giorgio Camilli, Michelle Maxson, Bernhard Hube, David L. Moyes, Jonathan P. Richardson, Julian R. Naglik
{"title":"念珠菌素触发上皮细胞应激诱导坏死死亡","authors":"Mariana Blagojevic, Giorgio Camilli, Michelle Maxson, Bernhard Hube, David L. Moyes, Jonathan P. Richardson, Julian R. Naglik","doi":"10.1111/cmi.13371","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p><i>Candida albicans</i> is a common opportunistic fungal pathogen that causes a wide range of infections from superficial mucosal to hematogenously disseminated candidiasis. The hyphal form plays an important role in the pathogenic process by invading epithelial cells and causing tissue damage. Notably, the secretion of the hyphal toxin candidalysin is essential for both epithelial cell damage and activation of mucosal immune responses. However, the mechanism of candidalysin-induced cell death remains unclear. Here, we examined the induction of cell death by candidalysin in oral epithelial cells. Fluorescent imaging using healthy/apoptotic/necrotic cell markers revealed that candidalysin causes a rapid and marked increase in the population of necrotic rather than apoptotic cells in a concentration dependent manner. Activation of a necrosis-like pathway was confirmed since <i>C. albicans</i> and candidalysin failed to activate caspase-8 and -3, or the cleavage of poly (ADP-ribose) polymerase. Furthermore, oral epithelial cells treated with candidalysin showed rapid production of reactive oxygen species, disruption of mitochondria activity and mitochondrial membrane potential, ATP depletion and cytochrome c release. Collectively, these data demonstrate that oral epithelial cells respond to the secreted fungal toxin candidalysin by triggering numerous cellular stress responses that induce necrotic death.</p>\n </section>\n \n <section>\n \n <h3> Take aways</h3>\n \n <div>\n <ul>\n \n <li>Candidalysin secreted from <i>Candida albicans</i> causes epithelial cell stress.</li>\n \n <li>Candidalysin induces calcium influx and oxidative stress in host cells.</li>\n \n <li>Candidalysin induces mitochondrial dysfunction, ATP depletion and epithelial necrosis.</li>\n \n <li>The toxicity of candidalysin is mediated from the epithelial cell surface.</li>\n </ul>\n </div>\n </section>\n </div>","PeriodicalId":9844,"journal":{"name":"Cellular Microbiology","volume":"23 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/cmi.13371","citationCount":"21","resultStr":"{\"title\":\"Candidalysin triggers epithelial cellular stresses that induce necrotic death\",\"authors\":\"Mariana Blagojevic, Giorgio Camilli, Michelle Maxson, Bernhard Hube, David L. Moyes, Jonathan P. Richardson, Julian R. Naglik\",\"doi\":\"10.1111/cmi.13371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p><i>Candida albicans</i> is a common opportunistic fungal pathogen that causes a wide range of infections from superficial mucosal to hematogenously disseminated candidiasis. The hyphal form plays an important role in the pathogenic process by invading epithelial cells and causing tissue damage. Notably, the secretion of the hyphal toxin candidalysin is essential for both epithelial cell damage and activation of mucosal immune responses. However, the mechanism of candidalysin-induced cell death remains unclear. Here, we examined the induction of cell death by candidalysin in oral epithelial cells. Fluorescent imaging using healthy/apoptotic/necrotic cell markers revealed that candidalysin causes a rapid and marked increase in the population of necrotic rather than apoptotic cells in a concentration dependent manner. Activation of a necrosis-like pathway was confirmed since <i>C. albicans</i> and candidalysin failed to activate caspase-8 and -3, or the cleavage of poly (ADP-ribose) polymerase. Furthermore, oral epithelial cells treated with candidalysin showed rapid production of reactive oxygen species, disruption of mitochondria activity and mitochondrial membrane potential, ATP depletion and cytochrome c release. Collectively, these data demonstrate that oral epithelial cells respond to the secreted fungal toxin candidalysin by triggering numerous cellular stress responses that induce necrotic death.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Take aways</h3>\\n \\n <div>\\n <ul>\\n \\n <li>Candidalysin secreted from <i>Candida albicans</i> causes epithelial cell stress.</li>\\n \\n <li>Candidalysin induces calcium influx and oxidative stress in host cells.</li>\\n \\n <li>Candidalysin induces mitochondrial dysfunction, ATP depletion and epithelial necrosis.</li>\\n \\n <li>The toxicity of candidalysin is mediated from the epithelial cell surface.</li>\\n </ul>\\n </div>\\n </section>\\n </div>\",\"PeriodicalId\":9844,\"journal\":{\"name\":\"Cellular Microbiology\",\"volume\":\"23 10\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/cmi.13371\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cmi.13371\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cmi.13371","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Candidalysin triggers epithelial cellular stresses that induce necrotic death
Candida albicans is a common opportunistic fungal pathogen that causes a wide range of infections from superficial mucosal to hematogenously disseminated candidiasis. The hyphal form plays an important role in the pathogenic process by invading epithelial cells and causing tissue damage. Notably, the secretion of the hyphal toxin candidalysin is essential for both epithelial cell damage and activation of mucosal immune responses. However, the mechanism of candidalysin-induced cell death remains unclear. Here, we examined the induction of cell death by candidalysin in oral epithelial cells. Fluorescent imaging using healthy/apoptotic/necrotic cell markers revealed that candidalysin causes a rapid and marked increase in the population of necrotic rather than apoptotic cells in a concentration dependent manner. Activation of a necrosis-like pathway was confirmed since C. albicans and candidalysin failed to activate caspase-8 and -3, or the cleavage of poly (ADP-ribose) polymerase. Furthermore, oral epithelial cells treated with candidalysin showed rapid production of reactive oxygen species, disruption of mitochondria activity and mitochondrial membrane potential, ATP depletion and cytochrome c release. Collectively, these data demonstrate that oral epithelial cells respond to the secreted fungal toxin candidalysin by triggering numerous cellular stress responses that induce necrotic death.
Take aways
Candidalysin secreted from Candida albicans causes epithelial cell stress.
Candidalysin induces calcium influx and oxidative stress in host cells.
Candidalysin induces mitochondrial dysfunction, ATP depletion and epithelial necrosis.
The toxicity of candidalysin is mediated from the epithelial cell surface.
期刊介绍:
Cellular Microbiology aims to publish outstanding contributions to the understanding of interactions between microbes, prokaryotes and eukaryotes, and their host in the context of pathogenic or mutualistic relationships, including co-infections and microbiota. We welcome studies on single cells, animals and plants, and encourage the use of model hosts and organoid cultures. Submission on cell and molecular biological aspects of microbes, such as their intracellular organization or the establishment and maintenance of their architecture in relation to virulence and pathogenicity are also encouraged. Contributions must provide mechanistic insights supported by quantitative data obtained through imaging, cellular, biochemical, structural or genetic approaches.