{"title":"表观遗传机制在放射治疗后脱靶效应传播中的作用综述","authors":"Swati, Vijayta D. Chadha","doi":"10.1016/j.mrrev.2021.108370","DOIUrl":null,"url":null,"abstract":"<div><p>Despite being an important diagnostic and treatment modality, ionizing radiation (IR) is also known to cause genotoxicity and multiple side effects leading to secondary carcinogenesis. While modern cancer radiation therapy has improved patient recovery and enhanced survival rates, the risk of radiation-related adverse effects has become a growing challenge. It is now well-accepted that IR-induced side effects are not exclusively restricted to exposed cells but also spread to distant ‘bystander’ cells and even to the unexposed progeny of the irradiated cells. These ‘off-targeted’ effects involve a plethora of molecular events depending on the type of radiation and tumor tissue background. While the mechanisms by which off-targeted effects arise remain obscure, emerging evidence based on the non-mendelian inheritance of various manifestations of them as well as their persistence for longer periods supports a contribution of epigenetic factors. This review focuses on the major epigenetic phenomena including DNA methylation, histone modifications, and small RNA mediated silencing and their versatile role in the manifestation of IR induced off-targeted effects. As short- and long-range communication vehicles respectively, the role of gap junctions and exosomes in spreading these epigenetic-alteration driven off-targeted effects is also discussed. Furthermore, this review emphasizes the possible therapeutic potentials of these epigenetic mechanisms and how beneficial outcomes could potentially be achieved by targeting various signaling molecules involved in these mechanisms.</p></div>","PeriodicalId":49789,"journal":{"name":"Mutation Research-Reviews in Mutation Research","volume":"787 ","pages":"Article 108370"},"PeriodicalIF":6.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mrrev.2021.108370","citationCount":"1","resultStr":"{\"title\":\"Role of epigenetic mechanisms in propagating off-targeted effects following radiation based therapies – A review\",\"authors\":\"Swati, Vijayta D. Chadha\",\"doi\":\"10.1016/j.mrrev.2021.108370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Despite being an important diagnostic and treatment modality, ionizing radiation (IR) is also known to cause genotoxicity and multiple side effects leading to secondary carcinogenesis. While modern cancer radiation therapy has improved patient recovery and enhanced survival rates, the risk of radiation-related adverse effects has become a growing challenge. It is now well-accepted that IR-induced side effects are not exclusively restricted to exposed cells but also spread to distant ‘bystander’ cells and even to the unexposed progeny of the irradiated cells. These ‘off-targeted’ effects involve a plethora of molecular events depending on the type of radiation and tumor tissue background. While the mechanisms by which off-targeted effects arise remain obscure, emerging evidence based on the non-mendelian inheritance of various manifestations of them as well as their persistence for longer periods supports a contribution of epigenetic factors. This review focuses on the major epigenetic phenomena including DNA methylation, histone modifications, and small RNA mediated silencing and their versatile role in the manifestation of IR induced off-targeted effects. As short- and long-range communication vehicles respectively, the role of gap junctions and exosomes in spreading these epigenetic-alteration driven off-targeted effects is also discussed. Furthermore, this review emphasizes the possible therapeutic potentials of these epigenetic mechanisms and how beneficial outcomes could potentially be achieved by targeting various signaling molecules involved in these mechanisms.</p></div>\",\"PeriodicalId\":49789,\"journal\":{\"name\":\"Mutation Research-Reviews in Mutation Research\",\"volume\":\"787 \",\"pages\":\"Article 108370\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mrrev.2021.108370\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research-Reviews in Mutation Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383574221000077\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research-Reviews in Mutation Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383574221000077","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Role of epigenetic mechanisms in propagating off-targeted effects following radiation based therapies – A review
Despite being an important diagnostic and treatment modality, ionizing radiation (IR) is also known to cause genotoxicity and multiple side effects leading to secondary carcinogenesis. While modern cancer radiation therapy has improved patient recovery and enhanced survival rates, the risk of radiation-related adverse effects has become a growing challenge. It is now well-accepted that IR-induced side effects are not exclusively restricted to exposed cells but also spread to distant ‘bystander’ cells and even to the unexposed progeny of the irradiated cells. These ‘off-targeted’ effects involve a plethora of molecular events depending on the type of radiation and tumor tissue background. While the mechanisms by which off-targeted effects arise remain obscure, emerging evidence based on the non-mendelian inheritance of various manifestations of them as well as their persistence for longer periods supports a contribution of epigenetic factors. This review focuses on the major epigenetic phenomena including DNA methylation, histone modifications, and small RNA mediated silencing and their versatile role in the manifestation of IR induced off-targeted effects. As short- and long-range communication vehicles respectively, the role of gap junctions and exosomes in spreading these epigenetic-alteration driven off-targeted effects is also discussed. Furthermore, this review emphasizes the possible therapeutic potentials of these epigenetic mechanisms and how beneficial outcomes could potentially be achieved by targeting various signaling molecules involved in these mechanisms.
期刊介绍:
The subject areas of Reviews in Mutation Research encompass the entire spectrum of the science of mutation research and its applications, with particular emphasis on the relationship between mutation and disease. Thus this section will cover advances in human genome research (including evolving technologies for mutation detection and functional genomics) with applications in clinical genetics, gene therapy and health risk assessment for environmental agents of concern.