{"title":"澳洲肺鱼Neoceratodus forsteri脑干的拓扑分析。","authors":"Rudolf Nieuwenhuys","doi":"10.1159/000516409","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a survey of the cell masses in the brainstem of the Australian lungfish Neoceratodus forsteri, based ontransversely cut Bodian-stained serial sections, supplemented by immunohistochemical data from the recent literature. This study is intended to serve a double purpose. First it concludes and completes a series of publications on the structure of the brainstem in representative species of all groups of anamniote vertebrates. Within the framework of this comparative program the cell masses in the brainstem and their positional relations are analyzed in the light of the Herrick-Johnston concept, according to which the brainstem nuclei are arranged in four longitudinal, functional zones or columns, the boundaries of which are marked by ventricular sulci. The procedure employed in this analysis essentially involves two steps: first, the cell masses and large individual cells are projected upon the ventricular surface, and next, the ventricular surface is flattened out, that is, subjected to a one-to-one continuous topological transformation [J Comp Neurol. 1974;156:255-267]. The second purpose of the present paper is to complement our mapping of the longitudinal zonal arrangement of the cell masses in the brainstem of Neoceratoduswith a subdivision in transversely oriented neural segments. Five longitudinal rhombencephalic sulci - the sulcus medianus inferior, the sulcus intermedius ventralis, the sulcus limitans, the sulcus intermedius dorsalis and the sulcus medianus superior - and four longitudinal mesencephalic sulci - the sulcus tegmentalis medialis, the sulcus tegmentalis lateralis, the sulcus subtectalis and the sulcus lateralis mesencephali - could be distinguished. Two obliquely oriented grooves, present in the isthmic region - the sulcus isthmi dorsalis and ventralis - deviate from the overall longitudinal pattern of the other sulci. Although in Neoceratodus most neuronal perikarya are situated within a diffuse periventricular gray, 45 cell masses could be delineated. Ten of these are primary efferent or motor nuclei, eight are primary afferent or sensory centers, six are considered to be components of the reticular formation and the remaining 21 may be interpreted as \"relay\" nuclei. The topological analysis showed that in most of the rhombencephalon the gray matter is arranged in four longitudinal zones or areas, termed area ventralis, area intermedioventralis, area intermediodorsalis and area dorsalis. The sulcus intermedius ventralis, the sulcus limitans, and the sulcus intermedius dorsalis mark the boundaries between these morphological entities. These longitudinal zones coincide largely, but not entirely, with the functional columns of Herrick and Johnston. The most obvious incongruity is that the area intermediodorsalis contains, in addition to the viscerosensory nucleus of the solitary tract, several general somatosensory and special somatosensory centers. The isthmus region does not exhibit a clear morphological zonal pattern. The mesencephalon is divisible into a ventral, primarily motor zone and a dorsal somatosensory zone. The boundary between these zones is marked by the sulcus tegmentalis lateralis, which may be considered as an isolated rostral extremity of the sulcus limitans. The results of this study are summarized in a \"classical\" topological map, as well as in a \"modernized\" version of this map, in which neuromere borders are indicated.</p>","PeriodicalId":56328,"journal":{"name":"Brain Behavior and Evolution","volume":"96 4-6","pages":"242-262"},"PeriodicalIF":2.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000516409","citationCount":"4","resultStr":"{\"title\":\"Topological Analysis of the Brainstem of the Australian Lungfish Neoceratodus forsteri.\",\"authors\":\"Rudolf Nieuwenhuys\",\"doi\":\"10.1159/000516409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents a survey of the cell masses in the brainstem of the Australian lungfish Neoceratodus forsteri, based ontransversely cut Bodian-stained serial sections, supplemented by immunohistochemical data from the recent literature. This study is intended to serve a double purpose. First it concludes and completes a series of publications on the structure of the brainstem in representative species of all groups of anamniote vertebrates. Within the framework of this comparative program the cell masses in the brainstem and their positional relations are analyzed in the light of the Herrick-Johnston concept, according to which the brainstem nuclei are arranged in four longitudinal, functional zones or columns, the boundaries of which are marked by ventricular sulci. The procedure employed in this analysis essentially involves two steps: first, the cell masses and large individual cells are projected upon the ventricular surface, and next, the ventricular surface is flattened out, that is, subjected to a one-to-one continuous topological transformation [J Comp Neurol. 1974;156:255-267]. The second purpose of the present paper is to complement our mapping of the longitudinal zonal arrangement of the cell masses in the brainstem of Neoceratoduswith a subdivision in transversely oriented neural segments. Five longitudinal rhombencephalic sulci - the sulcus medianus inferior, the sulcus intermedius ventralis, the sulcus limitans, the sulcus intermedius dorsalis and the sulcus medianus superior - and four longitudinal mesencephalic sulci - the sulcus tegmentalis medialis, the sulcus tegmentalis lateralis, the sulcus subtectalis and the sulcus lateralis mesencephali - could be distinguished. Two obliquely oriented grooves, present in the isthmic region - the sulcus isthmi dorsalis and ventralis - deviate from the overall longitudinal pattern of the other sulci. Although in Neoceratodus most neuronal perikarya are situated within a diffuse periventricular gray, 45 cell masses could be delineated. Ten of these are primary efferent or motor nuclei, eight are primary afferent or sensory centers, six are considered to be components of the reticular formation and the remaining 21 may be interpreted as \\\"relay\\\" nuclei. The topological analysis showed that in most of the rhombencephalon the gray matter is arranged in four longitudinal zones or areas, termed area ventralis, area intermedioventralis, area intermediodorsalis and area dorsalis. The sulcus intermedius ventralis, the sulcus limitans, and the sulcus intermedius dorsalis mark the boundaries between these morphological entities. These longitudinal zones coincide largely, but not entirely, with the functional columns of Herrick and Johnston. The most obvious incongruity is that the area intermediodorsalis contains, in addition to the viscerosensory nucleus of the solitary tract, several general somatosensory and special somatosensory centers. The isthmus region does not exhibit a clear morphological zonal pattern. The mesencephalon is divisible into a ventral, primarily motor zone and a dorsal somatosensory zone. The boundary between these zones is marked by the sulcus tegmentalis lateralis, which may be considered as an isolated rostral extremity of the sulcus limitans. The results of this study are summarized in a \\\"classical\\\" topological map, as well as in a \\\"modernized\\\" version of this map, in which neuromere borders are indicated.</p>\",\"PeriodicalId\":56328,\"journal\":{\"name\":\"Brain Behavior and Evolution\",\"volume\":\"96 4-6\",\"pages\":\"242-262\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000516409\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Behavior and Evolution\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1159/000516409\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/5/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Behavior and Evolution","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1159/000516409","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Topological Analysis of the Brainstem of the Australian Lungfish Neoceratodus forsteri.
This paper presents a survey of the cell masses in the brainstem of the Australian lungfish Neoceratodus forsteri, based ontransversely cut Bodian-stained serial sections, supplemented by immunohistochemical data from the recent literature. This study is intended to serve a double purpose. First it concludes and completes a series of publications on the structure of the brainstem in representative species of all groups of anamniote vertebrates. Within the framework of this comparative program the cell masses in the brainstem and their positional relations are analyzed in the light of the Herrick-Johnston concept, according to which the brainstem nuclei are arranged in four longitudinal, functional zones or columns, the boundaries of which are marked by ventricular sulci. The procedure employed in this analysis essentially involves two steps: first, the cell masses and large individual cells are projected upon the ventricular surface, and next, the ventricular surface is flattened out, that is, subjected to a one-to-one continuous topological transformation [J Comp Neurol. 1974;156:255-267]. The second purpose of the present paper is to complement our mapping of the longitudinal zonal arrangement of the cell masses in the brainstem of Neoceratoduswith a subdivision in transversely oriented neural segments. Five longitudinal rhombencephalic sulci - the sulcus medianus inferior, the sulcus intermedius ventralis, the sulcus limitans, the sulcus intermedius dorsalis and the sulcus medianus superior - and four longitudinal mesencephalic sulci - the sulcus tegmentalis medialis, the sulcus tegmentalis lateralis, the sulcus subtectalis and the sulcus lateralis mesencephali - could be distinguished. Two obliquely oriented grooves, present in the isthmic region - the sulcus isthmi dorsalis and ventralis - deviate from the overall longitudinal pattern of the other sulci. Although in Neoceratodus most neuronal perikarya are situated within a diffuse periventricular gray, 45 cell masses could be delineated. Ten of these are primary efferent or motor nuclei, eight are primary afferent or sensory centers, six are considered to be components of the reticular formation and the remaining 21 may be interpreted as "relay" nuclei. The topological analysis showed that in most of the rhombencephalon the gray matter is arranged in four longitudinal zones or areas, termed area ventralis, area intermedioventralis, area intermediodorsalis and area dorsalis. The sulcus intermedius ventralis, the sulcus limitans, and the sulcus intermedius dorsalis mark the boundaries between these morphological entities. These longitudinal zones coincide largely, but not entirely, with the functional columns of Herrick and Johnston. The most obvious incongruity is that the area intermediodorsalis contains, in addition to the viscerosensory nucleus of the solitary tract, several general somatosensory and special somatosensory centers. The isthmus region does not exhibit a clear morphological zonal pattern. The mesencephalon is divisible into a ventral, primarily motor zone and a dorsal somatosensory zone. The boundary between these zones is marked by the sulcus tegmentalis lateralis, which may be considered as an isolated rostral extremity of the sulcus limitans. The results of this study are summarized in a "classical" topological map, as well as in a "modernized" version of this map, in which neuromere borders are indicated.
期刊介绍:
''Brain, Behavior and Evolution'' is a journal with a loyal following, high standards, and a unique profile as the main outlet for the continuing scientific discourse on nervous system evolution. The journal publishes comparative neurobiological studies that focus on nervous system structure, function, or development in vertebrates as well as invertebrates. Approaches range from the molecular over the anatomical and physiological to the behavioral. Despite this diversity, most papers published in ''Brain, Behavior and Evolution'' include an evolutionary angle, at least in the discussion, and focus on neural mechanisms or phenomena. Some purely behavioral research may be within the journal’s scope, but the suitability of such manuscripts will be assessed on a case-by-case basis. The journal also publishes review articles that provide critical overviews of current topics in evolutionary neurobiology.