Takuya Morimoto, Yuto Kitamura, Koji Numaguchi, Akihiro Itai
{"title":"李(蔷薇科)亚属杂交胚珠转录组反应的研究。","authors":"Takuya Morimoto, Yuto Kitamura, Koji Numaguchi, Akihiro Itai","doi":"10.1007/s00497-021-00423-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Characterization of hybrid seed failure in Prunus provides insight into conserved or lineage-specific hybrid incompatibility mechanisms in plant species. Postzygotic hybrid incompatibility resulting from a cross between different species involves complex mechanisms occurring at various developmental stages. Embryo arrest, followed by seed abortion, is the first stage of such incompatibility reactions and inhibits hybrid seed development. In Prunus, a rosaceous woody species, some interspecific crosses result in fruit drop during the early stage of fruit development, in which inferior seed development may be accounted for the observed hybrid incompatibility. In this study, we investigated ovule development and the transcriptomes of developing ovules in inter-subgeneric crosses of Prunus. We conducted a cross of Prunus mume (subgenus Prunus), pollinated by P. persica (subgenus Amygdalus), and found that ovule and seed coat degeneration occurs before fruit drop. Transcriptome analysis identified differentially expressed genes enriched in several GO pathways, including organelle development, stimulus response, and signaling. Among these pathways, the organelle-related genes were actively regulated during ovule development, as they showed higher expression in the early stage of interspecific crosses and declined in the later stage, suggesting that the differential regulation of organelle function may induce the degeneration of hybrid ovules. Additionally, genes related to ovule and seed coat development, such as genes encoding AGL-like and auxin response, were differentially regulated in Prunus interspecific crosses. Our results provide histological and molecular information on hybrid seed abortion in Prunus that could be utilized to develop new hybrid crops. Additionally, we compared and discussed transcriptome responses to hybrid seed failure in Prunus and other plant species, which provides insight into conserved or lineage-specific hybrid incompatibility mechanisms in some plant species.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"34 3","pages":"255-266"},"PeriodicalIF":2.9000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00497-021-00423-2","citationCount":"1","resultStr":"{\"title\":\"Characterization of transcriptomic response in ovules derived from inter-subgeneric hybridization in Prunus (Rosaceae) species.\",\"authors\":\"Takuya Morimoto, Yuto Kitamura, Koji Numaguchi, Akihiro Itai\",\"doi\":\"10.1007/s00497-021-00423-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>Characterization of hybrid seed failure in Prunus provides insight into conserved or lineage-specific hybrid incompatibility mechanisms in plant species. Postzygotic hybrid incompatibility resulting from a cross between different species involves complex mechanisms occurring at various developmental stages. Embryo arrest, followed by seed abortion, is the first stage of such incompatibility reactions and inhibits hybrid seed development. In Prunus, a rosaceous woody species, some interspecific crosses result in fruit drop during the early stage of fruit development, in which inferior seed development may be accounted for the observed hybrid incompatibility. In this study, we investigated ovule development and the transcriptomes of developing ovules in inter-subgeneric crosses of Prunus. We conducted a cross of Prunus mume (subgenus Prunus), pollinated by P. persica (subgenus Amygdalus), and found that ovule and seed coat degeneration occurs before fruit drop. Transcriptome analysis identified differentially expressed genes enriched in several GO pathways, including organelle development, stimulus response, and signaling. Among these pathways, the organelle-related genes were actively regulated during ovule development, as they showed higher expression in the early stage of interspecific crosses and declined in the later stage, suggesting that the differential regulation of organelle function may induce the degeneration of hybrid ovules. Additionally, genes related to ovule and seed coat development, such as genes encoding AGL-like and auxin response, were differentially regulated in Prunus interspecific crosses. Our results provide histological and molecular information on hybrid seed abortion in Prunus that could be utilized to develop new hybrid crops. Additionally, we compared and discussed transcriptome responses to hybrid seed failure in Prunus and other plant species, which provides insight into conserved or lineage-specific hybrid incompatibility mechanisms in some plant species.</p>\",\"PeriodicalId\":51297,\"journal\":{\"name\":\"Plant Reproduction\",\"volume\":\"34 3\",\"pages\":\"255-266\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00497-021-00423-2\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Reproduction\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00497-021-00423-2\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/6/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00497-021-00423-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Characterization of transcriptomic response in ovules derived from inter-subgeneric hybridization in Prunus (Rosaceae) species.
Key message: Characterization of hybrid seed failure in Prunus provides insight into conserved or lineage-specific hybrid incompatibility mechanisms in plant species. Postzygotic hybrid incompatibility resulting from a cross between different species involves complex mechanisms occurring at various developmental stages. Embryo arrest, followed by seed abortion, is the first stage of such incompatibility reactions and inhibits hybrid seed development. In Prunus, a rosaceous woody species, some interspecific crosses result in fruit drop during the early stage of fruit development, in which inferior seed development may be accounted for the observed hybrid incompatibility. In this study, we investigated ovule development and the transcriptomes of developing ovules in inter-subgeneric crosses of Prunus. We conducted a cross of Prunus mume (subgenus Prunus), pollinated by P. persica (subgenus Amygdalus), and found that ovule and seed coat degeneration occurs before fruit drop. Transcriptome analysis identified differentially expressed genes enriched in several GO pathways, including organelle development, stimulus response, and signaling. Among these pathways, the organelle-related genes were actively regulated during ovule development, as they showed higher expression in the early stage of interspecific crosses and declined in the later stage, suggesting that the differential regulation of organelle function may induce the degeneration of hybrid ovules. Additionally, genes related to ovule and seed coat development, such as genes encoding AGL-like and auxin response, were differentially regulated in Prunus interspecific crosses. Our results provide histological and molecular information on hybrid seed abortion in Prunus that could be utilized to develop new hybrid crops. Additionally, we compared and discussed transcriptome responses to hybrid seed failure in Prunus and other plant species, which provides insight into conserved or lineage-specific hybrid incompatibility mechanisms in some plant species.
期刊介绍:
Plant Reproduction (formerly known as Sexual Plant Reproduction) is a journal devoted to publishing high-quality research in the field of reproductive processes in plants. Article formats include original research papers, expert reviews, methods reports and opinion papers. Articles are selected based on significance for the field of plant reproduction, spanning from the induction of flowering to fruit development. Topics incl … show all