{"title":"我的蛋白质在细胞的什么地方?","authors":"David J DeRosier","doi":"10.1017/S003358352100007X","DOIUrl":null,"url":null,"abstract":"<p><p>The application of cryo-correlative light and cryo-electron microscopy (cryo-CLEM) gives us a way to locate structures of interest in the electron microscope. In brief, the structures of interest are fluorescently tagged, and images from the cryo-fluorescent microscope (cryo-FM) maps are superimposed on those from the cryo-electron microscope (cryo-EM). By enhancing cryo-FM to include single-molecule localization microscopy (SMLM), we can achieve much better localization. The introduction of cryo-SMLM increased the yield of photons from fluorophores, which can benefit localization efforts. Dahlberg and Moerner (2021, Annual Review of Physical Chemistry, 72, 253-278) have a recent broad and elegant review of super-resolution cryo-CLEM. This paper focuses on cryo(F)PALM/STORM for the cryo-electron tomography community. I explore the current challenges to increase the accuracy of localization by SMLM and the mapping of those positions onto cryo-EM images and maps. There is much to consider: we need to know if the excitation of fluorophores damages the structures we seek to visualize. We need to determine if higher numerical aperture (NA) objectives, which add complexity to image analysis but increase resolution and the efficiency of photon collection, are better than lower NA objectives, which pose fewer problems. We need to figure out the best way to determine the axial position of fluorophores. We need to have better ways of aligning maps determined by FM with those determined by EM. We need to improve the instrumentation to be easier to use, more accurate, and ice-contamination free. The bottom line is that we have more work to do.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"54 ","pages":"e9"},"PeriodicalIF":7.2000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S003358352100007X","citationCount":"10","resultStr":"{\"title\":\"Where in the cell is my protein?\",\"authors\":\"David J DeRosier\",\"doi\":\"10.1017/S003358352100007X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The application of cryo-correlative light and cryo-electron microscopy (cryo-CLEM) gives us a way to locate structures of interest in the electron microscope. In brief, the structures of interest are fluorescently tagged, and images from the cryo-fluorescent microscope (cryo-FM) maps are superimposed on those from the cryo-electron microscope (cryo-EM). By enhancing cryo-FM to include single-molecule localization microscopy (SMLM), we can achieve much better localization. The introduction of cryo-SMLM increased the yield of photons from fluorophores, which can benefit localization efforts. Dahlberg and Moerner (2021, Annual Review of Physical Chemistry, 72, 253-278) have a recent broad and elegant review of super-resolution cryo-CLEM. This paper focuses on cryo(F)PALM/STORM for the cryo-electron tomography community. I explore the current challenges to increase the accuracy of localization by SMLM and the mapping of those positions onto cryo-EM images and maps. There is much to consider: we need to know if the excitation of fluorophores damages the structures we seek to visualize. We need to determine if higher numerical aperture (NA) objectives, which add complexity to image analysis but increase resolution and the efficiency of photon collection, are better than lower NA objectives, which pose fewer problems. We need to figure out the best way to determine the axial position of fluorophores. We need to have better ways of aligning maps determined by FM with those determined by EM. We need to improve the instrumentation to be easier to use, more accurate, and ice-contamination free. The bottom line is that we have more work to do.</p>\",\"PeriodicalId\":20828,\"journal\":{\"name\":\"Quarterly Reviews of Biophysics\",\"volume\":\"54 \",\"pages\":\"e9\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2021-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S003358352100007X\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Reviews of Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1017/S003358352100007X\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Reviews of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/S003358352100007X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 10
摘要
低温相关光和低温电子显微镜(cryo-CLEM)的应用为我们在电子显微镜下定位感兴趣的结构提供了一种方法。简而言之,对感兴趣的结构进行荧光标记,并将冷冻荧光显微镜(cryo-FM)的图像与冷冻电子显微镜(cryo-EM)的图像叠加在一起。通过对冷冻调频技术进行改进,加入单分子定位显微镜(SMLM),可以获得更好的定位效果。低温smlm的引入增加了来自荧光团的光子产量,这有利于定位工作。Dahlberg和Moerner (2021, Annual Review of Physical Chemistry, 72, 253-278)最近对超分辨率冷冻clem进行了广泛而优雅的综述。本文重点介绍了低温电子断层成像界的cryo(F)PALM/STORM。我探讨了当前的挑战,以提高SMLM的定位精度,并将这些位置映射到冷冻电镜图像和地图上。有很多事情需要考虑:我们需要知道荧光团的激发是否会破坏我们想要可视化的结构。我们需要确定高数值孔径物镜是否优于低数值孔径物镜,前者增加了图像分析的复杂性,但提高了分辨率和光子收集效率,而后者问题较少。我们需要找出确定荧光团轴向位置的最佳方法。我们需要有更好的方法来将FM确定的地图与EM确定的地图对齐。我们需要改进仪器,使其更易于使用,更准确,并且无冰污染。最重要的是,我们还有更多的工作要做。
The application of cryo-correlative light and cryo-electron microscopy (cryo-CLEM) gives us a way to locate structures of interest in the electron microscope. In brief, the structures of interest are fluorescently tagged, and images from the cryo-fluorescent microscope (cryo-FM) maps are superimposed on those from the cryo-electron microscope (cryo-EM). By enhancing cryo-FM to include single-molecule localization microscopy (SMLM), we can achieve much better localization. The introduction of cryo-SMLM increased the yield of photons from fluorophores, which can benefit localization efforts. Dahlberg and Moerner (2021, Annual Review of Physical Chemistry, 72, 253-278) have a recent broad and elegant review of super-resolution cryo-CLEM. This paper focuses on cryo(F)PALM/STORM for the cryo-electron tomography community. I explore the current challenges to increase the accuracy of localization by SMLM and the mapping of those positions onto cryo-EM images and maps. There is much to consider: we need to know if the excitation of fluorophores damages the structures we seek to visualize. We need to determine if higher numerical aperture (NA) objectives, which add complexity to image analysis but increase resolution and the efficiency of photon collection, are better than lower NA objectives, which pose fewer problems. We need to figure out the best way to determine the axial position of fluorophores. We need to have better ways of aligning maps determined by FM with those determined by EM. We need to improve the instrumentation to be easier to use, more accurate, and ice-contamination free. The bottom line is that we have more work to do.
期刊介绍:
Quarterly Reviews of Biophysics covers the field of experimental and computational biophysics. Experimental biophysics span across different physics-based measurements such as optical microscopy, super-resolution imaging, electron microscopy, X-ray and neutron diffraction, spectroscopy, calorimetry, thermodynamics and their integrated uses. Computational biophysics includes theory, simulations, bioinformatics and system analysis. These biophysical methodologies are used to discover the structure, function and physiology of biological systems in varying complexities from cells, organelles, membranes, protein-nucleic acid complexes, molecular machines to molecules. The majority of reviews published are invited from authors who have made significant contributions to the field, who give critical, readable and sometimes controversial accounts of recent progress and problems in their specialty. The journal has long-standing, worldwide reputation, demonstrated by its high ranking in the ISI Science Citation Index, as a forum for general and specialized communication between biophysicists working in different areas. Thematic issues are occasionally published.