{"title":"香蕉叶斑病的假尾孢子虫及其相关属(芭蕉属)。","authors":"P W Crous, J Carlier, V Roussel, J Z Groenewald","doi":"10.3114/fuse.2021.07.01","DOIUrl":null,"url":null,"abstract":"<p><p>The Sigatoka leaf spot complex on <i>Musa</i> spp. includes three major pathogens: <i>Pseudocercospora</i>, namely <i>P. musae</i> (Sigatoka leaf spot or yellow Sigatoka), <i>P. eumusae</i> (eumusae leaf spot disease), and <i>P. fijiensis</i> (black leaf streak disease or black Sigatoka). However, more than 30 species of <i>Mycosphaerellaceae</i> have been associated with Sigatoka leaf spots of banana, and previous reports of <i>P. musae</i> and <i>P. eumusae</i> need to be re-evaluated in light of recently described species. The aim of the present study was thus to investigate a global set of 228 isolates of <i>P. musae, P. eumusae</i> and close relatives on banana using multigene DNA sequence data [internal transcribed spacer regions with intervening 5.8S nrRNA gene (ITS), RNA polymerase II second largest subunit gene (<i>rpb2</i>), translation elongation factor 1-alpha gene (<i>tef1</i>), beta-tubulin gene (<i>tub2</i>), and the actin gene (<i>act</i>)] to confirm if these isolates represent <i>P. musae</i>, or a closely allied species. Based on these data one new species is described, namely <i>P. pseudomusae</i>, which is associated with leaf spot symptoms resembling those of <i>P. musae</i> on <i>Musa</i> in Indonesia. Furthermore, <i>P. eumusae, P. musae</i> and <i>P. fijiensis</i> are shown to be well defined taxa, with some isolates also representing <i>P. longispora.</i> Other genera encountered in the dataset are species of <i>Zasmidium</i> (Taiwan leaf speckle), <i>Metulocladosporiella</i> <i>(</i>Cladosporium leaf speckle) and Scolecobasidium leaf speckle. <b>Citation:</b> Crous P, Carlier J, Roussel V, Groenewald JZ (2020). <i>Pseudocercospora</i> and allied genera associated with leaf spots of banana (<i>Musa</i> spp.). <i>Fungal Systematics and Evolution</i> 7: 1-19. doi: 10.3114/fuse.2021.07.01.</p>","PeriodicalId":73121,"journal":{"name":"Fungal systematics and evolution","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/93/c5/fuse-2021-7-1.PMC8165963.pdf","citationCount":"4","resultStr":"{\"title\":\"<i>Pseudocercospora</i> and allied genera associated with leaf spots of banana (<i>Musa</i> spp.).\",\"authors\":\"P W Crous, J Carlier, V Roussel, J Z Groenewald\",\"doi\":\"10.3114/fuse.2021.07.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Sigatoka leaf spot complex on <i>Musa</i> spp. includes three major pathogens: <i>Pseudocercospora</i>, namely <i>P. musae</i> (Sigatoka leaf spot or yellow Sigatoka), <i>P. eumusae</i> (eumusae leaf spot disease), and <i>P. fijiensis</i> (black leaf streak disease or black Sigatoka). However, more than 30 species of <i>Mycosphaerellaceae</i> have been associated with Sigatoka leaf spots of banana, and previous reports of <i>P. musae</i> and <i>P. eumusae</i> need to be re-evaluated in light of recently described species. The aim of the present study was thus to investigate a global set of 228 isolates of <i>P. musae, P. eumusae</i> and close relatives on banana using multigene DNA sequence data [internal transcribed spacer regions with intervening 5.8S nrRNA gene (ITS), RNA polymerase II second largest subunit gene (<i>rpb2</i>), translation elongation factor 1-alpha gene (<i>tef1</i>), beta-tubulin gene (<i>tub2</i>), and the actin gene (<i>act</i>)] to confirm if these isolates represent <i>P. musae</i>, or a closely allied species. Based on these data one new species is described, namely <i>P. pseudomusae</i>, which is associated with leaf spot symptoms resembling those of <i>P. musae</i> on <i>Musa</i> in Indonesia. Furthermore, <i>P. eumusae, P. musae</i> and <i>P. fijiensis</i> are shown to be well defined taxa, with some isolates also representing <i>P. longispora.</i> Other genera encountered in the dataset are species of <i>Zasmidium</i> (Taiwan leaf speckle), <i>Metulocladosporiella</i> <i>(</i>Cladosporium leaf speckle) and Scolecobasidium leaf speckle. <b>Citation:</b> Crous P, Carlier J, Roussel V, Groenewald JZ (2020). <i>Pseudocercospora</i> and allied genera associated with leaf spots of banana (<i>Musa</i> spp.). <i>Fungal Systematics and Evolution</i> 7: 1-19. doi: 10.3114/fuse.2021.07.01.</p>\",\"PeriodicalId\":73121,\"journal\":{\"name\":\"Fungal systematics and evolution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/93/c5/fuse-2021-7-1.PMC8165963.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal systematics and evolution\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3114/fuse.2021.07.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/10/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal systematics and evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3114/fuse.2021.07.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/10/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Pseudocercospora and allied genera associated with leaf spots of banana (Musa spp.).
The Sigatoka leaf spot complex on Musa spp. includes three major pathogens: Pseudocercospora, namely P. musae (Sigatoka leaf spot or yellow Sigatoka), P. eumusae (eumusae leaf spot disease), and P. fijiensis (black leaf streak disease or black Sigatoka). However, more than 30 species of Mycosphaerellaceae have been associated with Sigatoka leaf spots of banana, and previous reports of P. musae and P. eumusae need to be re-evaluated in light of recently described species. The aim of the present study was thus to investigate a global set of 228 isolates of P. musae, P. eumusae and close relatives on banana using multigene DNA sequence data [internal transcribed spacer regions with intervening 5.8S nrRNA gene (ITS), RNA polymerase II second largest subunit gene (rpb2), translation elongation factor 1-alpha gene (tef1), beta-tubulin gene (tub2), and the actin gene (act)] to confirm if these isolates represent P. musae, or a closely allied species. Based on these data one new species is described, namely P. pseudomusae, which is associated with leaf spot symptoms resembling those of P. musae on Musa in Indonesia. Furthermore, P. eumusae, P. musae and P. fijiensis are shown to be well defined taxa, with some isolates also representing P. longispora. Other genera encountered in the dataset are species of Zasmidium (Taiwan leaf speckle), Metulocladosporiella(Cladosporium leaf speckle) and Scolecobasidium leaf speckle. Citation: Crous P, Carlier J, Roussel V, Groenewald JZ (2020). Pseudocercospora and allied genera associated with leaf spots of banana (Musa spp.). Fungal Systematics and Evolution 7: 1-19. doi: 10.3114/fuse.2021.07.01.