Medeea Popescu, Jonas D Van Belleghem, Arya Khosravi, Paul L Bollyky
{"title":"噬菌体和免疫系统。","authors":"Medeea Popescu, Jonas D Van Belleghem, Arya Khosravi, Paul L Bollyky","doi":"10.1146/annurev-virology-091919-074551","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteriophages-viruses that infect bacteria-are abundant within our bodies, but their significance to human health is only beginning to be explored. Here, we synthesize what is currently known about our phageome and its interactions with the immune system. We first review how phages indirectly affect immunity via bacterial expression of phage-encoded proteins. We next review how phages directly influence innate immunity and bacterial clearance. Finally, we discuss adaptive immunity against phages and its implications for phage/bacterial interactions. In light of these data, we propose that our microbiome can be understood as an interconnected network of bacteria, bacteriophages, and human cells and that the stability of these tri-kingdom interactions may be important for maintaining our immunologic and metabolic health. Conversely, the disruption of this balance, through exposure to exogenous phages, microbial dysbiosis, or immune dysregulation, may contribute to disease.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Bacteriophages and the Immune System.\",\"authors\":\"Medeea Popescu, Jonas D Van Belleghem, Arya Khosravi, Paul L Bollyky\",\"doi\":\"10.1146/annurev-virology-091919-074551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacteriophages-viruses that infect bacteria-are abundant within our bodies, but their significance to human health is only beginning to be explored. Here, we synthesize what is currently known about our phageome and its interactions with the immune system. We first review how phages indirectly affect immunity via bacterial expression of phage-encoded proteins. We next review how phages directly influence innate immunity and bacterial clearance. Finally, we discuss adaptive immunity against phages and its implications for phage/bacterial interactions. In light of these data, we propose that our microbiome can be understood as an interconnected network of bacteria, bacteriophages, and human cells and that the stability of these tri-kingdom interactions may be important for maintaining our immunologic and metabolic health. Conversely, the disruption of this balance, through exposure to exogenous phages, microbial dysbiosis, or immune dysregulation, may contribute to disease.</p>\",\"PeriodicalId\":48761,\"journal\":{\"name\":\"Annual Review of Virology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2021-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-virology-091919-074551\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/5/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-virology-091919-074551","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
Bacteriophages-viruses that infect bacteria-are abundant within our bodies, but their significance to human health is only beginning to be explored. Here, we synthesize what is currently known about our phageome and its interactions with the immune system. We first review how phages indirectly affect immunity via bacterial expression of phage-encoded proteins. We next review how phages directly influence innate immunity and bacterial clearance. Finally, we discuss adaptive immunity against phages and its implications for phage/bacterial interactions. In light of these data, we propose that our microbiome can be understood as an interconnected network of bacteria, bacteriophages, and human cells and that the stability of these tri-kingdom interactions may be important for maintaining our immunologic and metabolic health. Conversely, the disruption of this balance, through exposure to exogenous phages, microbial dysbiosis, or immune dysregulation, may contribute to disease.
期刊介绍:
The Annual Review of Virology serves as a conduit for disseminating thrilling advancements in our comprehension of viruses spanning animals, plants, bacteria, archaea, fungi, and protozoa. Its reviews illuminate novel concepts and trajectories in basic virology, elucidating viral disease mechanisms, exploring virus-host interactions, and scrutinizing cellular and immune responses to virus infection. These reviews underscore the exceptional capacity of viruses as potent probes for investigating cellular function.