分子晶体中精确的基于片段的51-V化学位移预测

IF 1.8 3区 化学 Q4 CHEMISTRY, PHYSICAL
Amanda Mathews, Joshua D. Hartman
{"title":"分子晶体中精确的基于片段的51-V化学位移预测","authors":"Amanda Mathews,&nbsp;Joshua D. Hartman","doi":"10.1016/j.ssnmr.2021.101733","DOIUrl":null,"url":null,"abstract":"<div><p><span>Nuclear magnetic resonance (NMR) spectroscopy plays a crucial role in determining molecular structure for complex biological and pharmaceutical compounds. NMR investigations are increasingly reliant on computation for mapping spectral features to chemical structures. Here we benchmark the accuracy of fragment-based </span><sup>51</sup><span>V chemical shielding tensor calculations using a training set comprised of 10 biologically and pharmaceutically relevant oxovanadium complexes. Using our self-consistent reproduction of the Madelung potential (SCRMP) electrostatic embedding model, we demonstrate comparable performance between fragment methods and computationally demanding cluster-based techniques. Specifically, fragment methods employing hybrid density functionals are capable of reproducing the experimental </span><sup>51</sup>V isotropic chemical shifts with a training set rms error of <span><math><mrow><mo>~</mo></mrow></math></span><span>9 ​ppm, representing a 20% improvement over traditional plane wave techniques. We provide training set-derived linear regression models for mapping the absolute shieldings obtained from computation to the experimentally determined chemical shifts using four common density functionals; PBE0, B3LYP, PBE, and BLYP. Finally, we establish the utility of fragment methods and the reported regression parameters examining four oxovanadium structures excluded from the training set including the tetracoordinate oxovanadium silicate </span><span><math><mrow><msub><mrow><mo>(</mo><mrow><mi>P</mi><msub><mi>h</mi><mn>3</mn></msub><mi>S</mi><mi>i</mi><mi>O</mi></mrow><mo>)</mo></mrow><mn>3</mn></msub><mi>V</mi><mi>O</mi></mrow></math></span>, VO<sup>15</sup>NGlySalbz which contains redox-active ligands, and the solid-state form of the common <sup>51</sup>V NMR reference compound <span><math><mrow><mi>V</mi><mi>O</mi><mi>C</mi><msub><mi>l</mi><mn>3</mn></msub></mrow></math></span>.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"114 ","pages":"Article 101733"},"PeriodicalIF":1.8000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2021.101733","citationCount":"2","resultStr":"{\"title\":\"Accurate fragment-based 51-V chemical shift predictions in molecular crystals\",\"authors\":\"Amanda Mathews,&nbsp;Joshua D. Hartman\",\"doi\":\"10.1016/j.ssnmr.2021.101733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Nuclear magnetic resonance (NMR) spectroscopy plays a crucial role in determining molecular structure for complex biological and pharmaceutical compounds. NMR investigations are increasingly reliant on computation for mapping spectral features to chemical structures. Here we benchmark the accuracy of fragment-based </span><sup>51</sup><span>V chemical shielding tensor calculations using a training set comprised of 10 biologically and pharmaceutically relevant oxovanadium complexes. Using our self-consistent reproduction of the Madelung potential (SCRMP) electrostatic embedding model, we demonstrate comparable performance between fragment methods and computationally demanding cluster-based techniques. Specifically, fragment methods employing hybrid density functionals are capable of reproducing the experimental </span><sup>51</sup>V isotropic chemical shifts with a training set rms error of <span><math><mrow><mo>~</mo></mrow></math></span><span>9 ​ppm, representing a 20% improvement over traditional plane wave techniques. We provide training set-derived linear regression models for mapping the absolute shieldings obtained from computation to the experimentally determined chemical shifts using four common density functionals; PBE0, B3LYP, PBE, and BLYP. Finally, we establish the utility of fragment methods and the reported regression parameters examining four oxovanadium structures excluded from the training set including the tetracoordinate oxovanadium silicate </span><span><math><mrow><msub><mrow><mo>(</mo><mrow><mi>P</mi><msub><mi>h</mi><mn>3</mn></msub><mi>S</mi><mi>i</mi><mi>O</mi></mrow><mo>)</mo></mrow><mn>3</mn></msub><mi>V</mi><mi>O</mi></mrow></math></span>, VO<sup>15</sup>NGlySalbz which contains redox-active ligands, and the solid-state form of the common <sup>51</sup>V NMR reference compound <span><math><mrow><mi>V</mi><mi>O</mi><mi>C</mi><msub><mi>l</mi><mn>3</mn></msub></mrow></math></span>.</p></div>\",\"PeriodicalId\":21937,\"journal\":{\"name\":\"Solid state nuclear magnetic resonance\",\"volume\":\"114 \",\"pages\":\"Article 101733\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ssnmr.2021.101733\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid state nuclear magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926204021000217\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid state nuclear magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926204021000217","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2

摘要

核磁共振波谱在确定复杂生物和药物化合物的分子结构方面起着至关重要的作用。核磁共振研究越来越依赖于将光谱特征映射到化学结构的计算。在这里,我们使用由10个生物和制药相关的氧化钒配合物组成的训练集对基于片段的51V化学屏蔽张量计算的准确性进行基准测试。利用我们对马德隆势(SCRMP)静电嵌入模型的自一致再现,我们证明了片段方法和计算要求高的基于簇的技术之间的可比性。具体来说,采用混合密度泛函数的碎片方法能够再现51V的实验各向同性化学位移,训练集均方根误差为~9 ppm,比传统平面波技术提高了20%。我们提供了训练集衍生的线性回归模型,用于映射从计算获得的绝对屏蔽到使用四个常见密度泛函实验确定的化学位移;PBE0, B3LYP, PBE和BLYP。最后,我们建立了片段方法的实用性和报道的回归参数,检测了排除在训练集之外的四配位硅酸氧钒(Ph3SiO)3VO、含有氧化还原活性配体的VO15NGlySalbz和常见51V核磁共振参考化合物VOCl3的固态形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Accurate fragment-based 51-V chemical shift predictions in molecular crystals

Accurate fragment-based 51-V chemical shift predictions in molecular crystals

Nuclear magnetic resonance (NMR) spectroscopy plays a crucial role in determining molecular structure for complex biological and pharmaceutical compounds. NMR investigations are increasingly reliant on computation for mapping spectral features to chemical structures. Here we benchmark the accuracy of fragment-based 51V chemical shielding tensor calculations using a training set comprised of 10 biologically and pharmaceutically relevant oxovanadium complexes. Using our self-consistent reproduction of the Madelung potential (SCRMP) electrostatic embedding model, we demonstrate comparable performance between fragment methods and computationally demanding cluster-based techniques. Specifically, fragment methods employing hybrid density functionals are capable of reproducing the experimental 51V isotropic chemical shifts with a training set rms error of ~9 ​ppm, representing a 20% improvement over traditional plane wave techniques. We provide training set-derived linear regression models for mapping the absolute shieldings obtained from computation to the experimentally determined chemical shifts using four common density functionals; PBE0, B3LYP, PBE, and BLYP. Finally, we establish the utility of fragment methods and the reported regression parameters examining four oxovanadium structures excluded from the training set including the tetracoordinate oxovanadium silicate (Ph3SiO)3VO, VO15NGlySalbz which contains redox-active ligands, and the solid-state form of the common 51V NMR reference compound VOCl3.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
9.40%
发文量
42
审稿时长
72 days
期刊介绍: The journal Solid State Nuclear Magnetic Resonance publishes original manuscripts of high scientific quality dealing with all experimental and theoretical aspects of solid state NMR. This includes advances in instrumentation, development of new experimental techniques and methodology, new theoretical insights, new data processing and simulation methods, and original applications of established or novel methods to scientific problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信