{"title":"宿主乳糖神经酰胺增强迟发爱德华菌感染","authors":"Kazuki Oishi, Moeri Morise, Linh Khanh Vo, Nhung Thi Tran, Daichi Sahashi, Rena Ueda-Wakamatsu, Wataru Nishimura, Masaharu Komatsu, Kazuhiro Shiozaki","doi":"10.1111/cmi.13365","DOIUrl":null,"url":null,"abstract":"<p><i>Edwardsiella tarda</i> is a Gram-negative bacterium causing economic damage in aquaculture. The interaction of <i>E. tarda</i> with microdomains is an important step in the invasion, but the target molecules in microdomains remain undefined. Here, we found that intraperitoneal injection of <i>E. tarda</i> altered splenic glycosphingolipid patterns in the model host medaka (<i>Oryzias latipes</i>) accompanied by alteration of glycosphingolipid metabolism-related gene expressions, suggesting that glycosphingolipid levels are involved in <i>E. tarda</i> infection. To ascertain the significance of glycosphingolipids in the infection, fish cell lines, DIT29 cells with a high amount of lactosylceramide (LacCer) and glucosylceramide (GlcCer), and GAKS cells with a low amount of these lipids, were treated with methyl-β-cyclodextrin to disrupt the microdomain. <i>E. tarda</i> infection was suppressed in DIT29 cells, but not in GAKS cells, suggesting the involvement of microdomain LacCer and GlcCer in the infection. DL-threo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol, an inhibitor of glycosphingolipid-synthesis, attenuated the infection in DIT29 cells, while Neu3-overexpressing GAKS cells, which accumulated LacCer, enhanced the infection. <i>E. tarda</i> possessed binding ability towards LacCer, but not GlcCer, and LacCer preincubation declined the infection towards fish cells, possibly due to the masking of binding sites. The present study suggests that LacCer may be a positive regulator of <i>E. tarda</i> invasion.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/cmi.13365","citationCount":"4","resultStr":"{\"title\":\"Host lactosylceramide enhances Edwardsiella tarda infection\",\"authors\":\"Kazuki Oishi, Moeri Morise, Linh Khanh Vo, Nhung Thi Tran, Daichi Sahashi, Rena Ueda-Wakamatsu, Wataru Nishimura, Masaharu Komatsu, Kazuhiro Shiozaki\",\"doi\":\"10.1111/cmi.13365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Edwardsiella tarda</i> is a Gram-negative bacterium causing economic damage in aquaculture. The interaction of <i>E. tarda</i> with microdomains is an important step in the invasion, but the target molecules in microdomains remain undefined. Here, we found that intraperitoneal injection of <i>E. tarda</i> altered splenic glycosphingolipid patterns in the model host medaka (<i>Oryzias latipes</i>) accompanied by alteration of glycosphingolipid metabolism-related gene expressions, suggesting that glycosphingolipid levels are involved in <i>E. tarda</i> infection. To ascertain the significance of glycosphingolipids in the infection, fish cell lines, DIT29 cells with a high amount of lactosylceramide (LacCer) and glucosylceramide (GlcCer), and GAKS cells with a low amount of these lipids, were treated with methyl-β-cyclodextrin to disrupt the microdomain. <i>E. tarda</i> infection was suppressed in DIT29 cells, but not in GAKS cells, suggesting the involvement of microdomain LacCer and GlcCer in the infection. DL-threo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol, an inhibitor of glycosphingolipid-synthesis, attenuated the infection in DIT29 cells, while Neu3-overexpressing GAKS cells, which accumulated LacCer, enhanced the infection. <i>E. tarda</i> possessed binding ability towards LacCer, but not GlcCer, and LacCer preincubation declined the infection towards fish cells, possibly due to the masking of binding sites. The present study suggests that LacCer may be a positive regulator of <i>E. tarda</i> invasion.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/cmi.13365\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cmi.13365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cmi.13365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Edwardsiella tarda is a Gram-negative bacterium causing economic damage in aquaculture. The interaction of E. tarda with microdomains is an important step in the invasion, but the target molecules in microdomains remain undefined. Here, we found that intraperitoneal injection of E. tarda altered splenic glycosphingolipid patterns in the model host medaka (Oryzias latipes) accompanied by alteration of glycosphingolipid metabolism-related gene expressions, suggesting that glycosphingolipid levels are involved in E. tarda infection. To ascertain the significance of glycosphingolipids in the infection, fish cell lines, DIT29 cells with a high amount of lactosylceramide (LacCer) and glucosylceramide (GlcCer), and GAKS cells with a low amount of these lipids, were treated with methyl-β-cyclodextrin to disrupt the microdomain. E. tarda infection was suppressed in DIT29 cells, but not in GAKS cells, suggesting the involvement of microdomain LacCer and GlcCer in the infection. DL-threo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol, an inhibitor of glycosphingolipid-synthesis, attenuated the infection in DIT29 cells, while Neu3-overexpressing GAKS cells, which accumulated LacCer, enhanced the infection. E. tarda possessed binding ability towards LacCer, but not GlcCer, and LacCer preincubation declined the infection towards fish cells, possibly due to the masking of binding sites. The present study suggests that LacCer may be a positive regulator of E. tarda invasion.