Paulo Emilio Feuser, Camila Guindani, Jonathann Correa Possato, Jaqueline Pereira Guessi, Arthur Poester Cordeiro, Ricardo Andrez Machado-de-Ávila, Claudia Sayer, Pedro Henrique Hermes de Araújo
{"title":"牛血清白蛋白在超顺磁/聚甲基丙烯酸甲酯纳米颗粒中的偶联作为磁性酶联免疫吸附测定的替代方法。","authors":"Paulo Emilio Feuser, Camila Guindani, Jonathann Correa Possato, Jaqueline Pereira Guessi, Arthur Poester Cordeiro, Ricardo Andrez Machado-de-Ávila, Claudia Sayer, Pedro Henrique Hermes de Araújo","doi":"10.1166/jnn.2021.19458","DOIUrl":null,"url":null,"abstract":"<p><p>Nanomaterials, such as magnetic nanoparticles have attracted significant attention of medical area due to their capacity to improve the performance of immunoassays. Therefore the aim of this work was to study the bovine serum albumin (BSA) conjugation in superparamagnetic (MNPs)/poly(methyl methacrylate) (PMMA) nanoparticles with further characterization and application in enzyme-linked immunosorbent (ELISA) assay. The successful conjugation of BSA in MNPs- PMMA nanoparticles was confirmed by several techniques, including light scattering, zeta potential, transmission electron microscopy (TEM) and Lowry protein quantification assay. The superparamagnetic properties were confirmed by vibrating sample magnetometer. BSA conjugated MNPs-PMMA nanoparticles presented higher interactions with antibody than free BSA. The BSA + MNPs-PMMA nanoparticles (magnetic ELISA assay) reduced the time and increased the sensibility of traditional ELISA assay, reinforcing the idea that the use these nanomaterials are an excellent alternative for the immunoassays field.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":"21 11","pages":"5493-5498"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bovine Serum Albumin Conjugation in Superparamagnetic/Poly(methyl methacrylate) Nanoparticles as an Alternative for Magnetic Enzyme-Linked Immunosorbent Assays.\",\"authors\":\"Paulo Emilio Feuser, Camila Guindani, Jonathann Correa Possato, Jaqueline Pereira Guessi, Arthur Poester Cordeiro, Ricardo Andrez Machado-de-Ávila, Claudia Sayer, Pedro Henrique Hermes de Araújo\",\"doi\":\"10.1166/jnn.2021.19458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanomaterials, such as magnetic nanoparticles have attracted significant attention of medical area due to their capacity to improve the performance of immunoassays. Therefore the aim of this work was to study the bovine serum albumin (BSA) conjugation in superparamagnetic (MNPs)/poly(methyl methacrylate) (PMMA) nanoparticles with further characterization and application in enzyme-linked immunosorbent (ELISA) assay. The successful conjugation of BSA in MNPs- PMMA nanoparticles was confirmed by several techniques, including light scattering, zeta potential, transmission electron microscopy (TEM) and Lowry protein quantification assay. The superparamagnetic properties were confirmed by vibrating sample magnetometer. BSA conjugated MNPs-PMMA nanoparticles presented higher interactions with antibody than free BSA. The BSA + MNPs-PMMA nanoparticles (magnetic ELISA assay) reduced the time and increased the sensibility of traditional ELISA assay, reinforcing the idea that the use these nanomaterials are an excellent alternative for the immunoassays field.</p>\",\"PeriodicalId\":16417,\"journal\":{\"name\":\"Journal of nanoscience and nanotechnology\",\"volume\":\"21 11\",\"pages\":\"5493-5498\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of nanoscience and nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jnn.2021.19458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanoscience and nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jnn.2021.19458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bovine Serum Albumin Conjugation in Superparamagnetic/Poly(methyl methacrylate) Nanoparticles as an Alternative for Magnetic Enzyme-Linked Immunosorbent Assays.
Nanomaterials, such as magnetic nanoparticles have attracted significant attention of medical area due to their capacity to improve the performance of immunoassays. Therefore the aim of this work was to study the bovine serum albumin (BSA) conjugation in superparamagnetic (MNPs)/poly(methyl methacrylate) (PMMA) nanoparticles with further characterization and application in enzyme-linked immunosorbent (ELISA) assay. The successful conjugation of BSA in MNPs- PMMA nanoparticles was confirmed by several techniques, including light scattering, zeta potential, transmission electron microscopy (TEM) and Lowry protein quantification assay. The superparamagnetic properties were confirmed by vibrating sample magnetometer. BSA conjugated MNPs-PMMA nanoparticles presented higher interactions with antibody than free BSA. The BSA + MNPs-PMMA nanoparticles (magnetic ELISA assay) reduced the time and increased the sensibility of traditional ELISA assay, reinforcing the idea that the use these nanomaterials are an excellent alternative for the immunoassays field.
期刊介绍:
JNN is a multidisciplinary peer-reviewed journal covering fundamental and applied research in all disciplines of science, engineering and medicine. JNN publishes all aspects of nanoscale science and technology dealing with materials synthesis, processing, nanofabrication, nanoprobes, spectroscopy, properties, biological systems, nanostructures, theory and computation, nanoelectronics, nano-optics, nano-mechanics, nanodevices, nanobiotechnology, nanomedicine, nanotoxicology.