{"title":"模拟日光下高效降解磺胺嘧啶的富氧氧溴化铋(Bi24O31Br10)光催化剂的合成","authors":"Zhenzhao Pei, Feng Li, Dandan Zhang, Yulong Zhang, Jiaxin Zhou, Hongyan Guo, Lifang Zhufand Jiaqin Wang","doi":"10.1166/jnn.2021.19479","DOIUrl":null,"url":null,"abstract":"<p><p>At present, compared with other antibiotic degradation systems, there are few literatures on pho- tocatalytic degradation of sulfadiazine (SDZ). In this research, it was firstly discovered that the oxygen-rich bismuth oxybromide (Bi<sub>24</sub>O<sub>31</sub> Br<sub>10</sub>) photocatalyst can efficiently degrade SDZ under simulated sunlight. In this paper, the prepared Bi<sub>24</sub>O<sub>31</sub>Br<sub>10</sub> photocatalyst by mixed solvothermal method represented outstanding photocatalytic performance. The catalyst synthesized at 120 °C and pH = 10 showed optimum degradation function in the samples prepared at various temperatures and pH value. After 3 h of irradiation, 96.2% of SDZ solution could be decomposed. The effects of preparation conditions, catalyst dosage, initial SDZ concentration and initial SDZ pH value on photocatalytic degradation efficiency were investigated systematically. Besides, the effect of active species was studied by trapping tests, and it was concluded that 'O₂ contributes the most to the photocatalytic process. A possible photocatalytic degradation mechanism was proposed.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":"21 11","pages":"5477-5485"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Oxygen-Rich Bismuth Oxybromide (Bi<sub>24</sub>O<sub>31</sub>Br<sub>10</sub>) Photocatalyst for High Efficiency Degradation of Sulfadiazine Under Simulated Sunlight.\",\"authors\":\"Zhenzhao Pei, Feng Li, Dandan Zhang, Yulong Zhang, Jiaxin Zhou, Hongyan Guo, Lifang Zhufand Jiaqin Wang\",\"doi\":\"10.1166/jnn.2021.19479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>At present, compared with other antibiotic degradation systems, there are few literatures on pho- tocatalytic degradation of sulfadiazine (SDZ). In this research, it was firstly discovered that the oxygen-rich bismuth oxybromide (Bi<sub>24</sub>O<sub>31</sub> Br<sub>10</sub>) photocatalyst can efficiently degrade SDZ under simulated sunlight. In this paper, the prepared Bi<sub>24</sub>O<sub>31</sub>Br<sub>10</sub> photocatalyst by mixed solvothermal method represented outstanding photocatalytic performance. The catalyst synthesized at 120 °C and pH = 10 showed optimum degradation function in the samples prepared at various temperatures and pH value. After 3 h of irradiation, 96.2% of SDZ solution could be decomposed. The effects of preparation conditions, catalyst dosage, initial SDZ concentration and initial SDZ pH value on photocatalytic degradation efficiency were investigated systematically. Besides, the effect of active species was studied by trapping tests, and it was concluded that 'O₂ contributes the most to the photocatalytic process. A possible photocatalytic degradation mechanism was proposed.</p>\",\"PeriodicalId\":16417,\"journal\":{\"name\":\"Journal of nanoscience and nanotechnology\",\"volume\":\"21 11\",\"pages\":\"5477-5485\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of nanoscience and nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jnn.2021.19479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanoscience and nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jnn.2021.19479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis of Oxygen-Rich Bismuth Oxybromide (Bi24O31Br10) Photocatalyst for High Efficiency Degradation of Sulfadiazine Under Simulated Sunlight.
At present, compared with other antibiotic degradation systems, there are few literatures on pho- tocatalytic degradation of sulfadiazine (SDZ). In this research, it was firstly discovered that the oxygen-rich bismuth oxybromide (Bi24O31 Br10) photocatalyst can efficiently degrade SDZ under simulated sunlight. In this paper, the prepared Bi24O31Br10 photocatalyst by mixed solvothermal method represented outstanding photocatalytic performance. The catalyst synthesized at 120 °C and pH = 10 showed optimum degradation function in the samples prepared at various temperatures and pH value. After 3 h of irradiation, 96.2% of SDZ solution could be decomposed. The effects of preparation conditions, catalyst dosage, initial SDZ concentration and initial SDZ pH value on photocatalytic degradation efficiency were investigated systematically. Besides, the effect of active species was studied by trapping tests, and it was concluded that 'O₂ contributes the most to the photocatalytic process. A possible photocatalytic degradation mechanism was proposed.
期刊介绍:
JNN is a multidisciplinary peer-reviewed journal covering fundamental and applied research in all disciplines of science, engineering and medicine. JNN publishes all aspects of nanoscale science and technology dealing with materials synthesis, processing, nanofabrication, nanoprobes, spectroscopy, properties, biological systems, nanostructures, theory and computation, nanoelectronics, nano-optics, nano-mechanics, nanodevices, nanobiotechnology, nanomedicine, nanotoxicology.