{"title":"HIF-1α在bcg刺激巨噬细胞极化中的作用及其体外杀瘤作用。","authors":"Pei Zhu, Yuyang Hou, Mengyan Tang, Zheng Jin, Youran Yu, Dong Li, Dongmei Yan, Zehua Dong","doi":"10.1007/s00430-021-00708-3","DOIUrl":null,"url":null,"abstract":"<p><p>BCG is widely used for cancer treatment, where macrophages play an important role. However, the mechanism of BCG affecting macrophages remains poorly understood. In this study, we used BCG to stimulate myeloid-derived macrophages lacking HIF-1α, the levels of TNF-α, IL-1β, CD86 of macrophages and their effects on the growth of tumor cells MCA207 and B16-F10 were detected. We found that the absence of HIF-1α prevents BCG-stimulated macrophages from polarizing towards the M (BCG) and attenuating its killing effect on tumor cells. In addition, we demonstrated that the tumors of mice lacking HIF-1α in macrophages were significantly increased by the experiment of mice transplantation. Our study provides relevant evidence for exploring the mechanism of the BCG vaccine in the prevention and treatment of related diseases.</p>","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":"210 2-3","pages":"149-156"},"PeriodicalIF":5.5000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00430-021-00708-3","citationCount":"2","resultStr":"{\"title\":\"The role of HIF-1α in BCG-stimulated macrophages polarization and their tumoricidal effects in vitro.\",\"authors\":\"Pei Zhu, Yuyang Hou, Mengyan Tang, Zheng Jin, Youran Yu, Dong Li, Dongmei Yan, Zehua Dong\",\"doi\":\"10.1007/s00430-021-00708-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BCG is widely used for cancer treatment, where macrophages play an important role. However, the mechanism of BCG affecting macrophages remains poorly understood. In this study, we used BCG to stimulate myeloid-derived macrophages lacking HIF-1α, the levels of TNF-α, IL-1β, CD86 of macrophages and their effects on the growth of tumor cells MCA207 and B16-F10 were detected. We found that the absence of HIF-1α prevents BCG-stimulated macrophages from polarizing towards the M (BCG) and attenuating its killing effect on tumor cells. In addition, we demonstrated that the tumors of mice lacking HIF-1α in macrophages were significantly increased by the experiment of mice transplantation. Our study provides relevant evidence for exploring the mechanism of the BCG vaccine in the prevention and treatment of related diseases.</p>\",\"PeriodicalId\":18369,\"journal\":{\"name\":\"Medical Microbiology and Immunology\",\"volume\":\"210 2-3\",\"pages\":\"149-156\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00430-021-00708-3\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Microbiology and Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00430-021-00708-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/5/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Microbiology and Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00430-021-00708-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
The role of HIF-1α in BCG-stimulated macrophages polarization and their tumoricidal effects in vitro.
BCG is widely used for cancer treatment, where macrophages play an important role. However, the mechanism of BCG affecting macrophages remains poorly understood. In this study, we used BCG to stimulate myeloid-derived macrophages lacking HIF-1α, the levels of TNF-α, IL-1β, CD86 of macrophages and their effects on the growth of tumor cells MCA207 and B16-F10 were detected. We found that the absence of HIF-1α prevents BCG-stimulated macrophages from polarizing towards the M (BCG) and attenuating its killing effect on tumor cells. In addition, we demonstrated that the tumors of mice lacking HIF-1α in macrophages were significantly increased by the experiment of mice transplantation. Our study provides relevant evidence for exploring the mechanism of the BCG vaccine in the prevention and treatment of related diseases.
期刊介绍:
Medical Microbiology and Immunology (MMIM) publishes key findings on all aspects of the interrelationship between infectious agents and the immune system of their hosts. The journal´s main focus is original research work on intrinsic, innate or adaptive immune responses to viral, bacterial, fungal and parasitic (protozoan and helminthic) infections and on the virulence of the respective infectious pathogens.
MMIM covers basic, translational as well as clinical research in infectious diseases and infectious disease immunology. Basic research using cell cultures, organoid, and animal models are welcome, provided that the models have a clinical correlate and address a relevant medical question.
The journal also considers manuscripts on the epidemiology of infectious diseases, including the emergence and epidemic spreading of pathogens and the development of resistance to anti-infective therapies, and on novel vaccines and other innovative measurements of prevention.
The following categories of manuscripts will not be considered for publication in MMIM:
submissions of preliminary work, of merely descriptive data sets without investigation of mechanisms or of limited global interest,
manuscripts on existing or novel anti-infective compounds, which focus on pharmaceutical or pharmacological aspects of the drugs,
manuscripts on existing or modified vaccines, unless they report on experimental or clinical efficacy studies or provide new immunological information on their mode of action,
manuscripts on the diagnostics of infectious diseases, unless they offer a novel concept to solve a pending diagnostic problem,
case reports or case series, unless they are embedded in a study that focuses on the anti-infectious immune response and/or on the virulence of a pathogen.