Tiffany J Callahan, Ignacio J Tripodi, Harrison Pielke-Lombardo, Lawrence E Hunter
{"title":"基于知识的生物医学数据科学。","authors":"Tiffany J Callahan, Ignacio J Tripodi, Harrison Pielke-Lombardo, Lawrence E Hunter","doi":"10.1146/annurev-biodatasci-010820-091627","DOIUrl":null,"url":null,"abstract":"<p><p>Knowledge-based biomedical data science involves the design and implementation of computer systems that act as if they knew about biomedicine. Such systems depend on formally represented knowledge in computer systems, often in the form of knowledge graphs. Here we survey recent progress in systems that use formally represented knowledge to address data science problems in both clinical and biological domains, as well as progress on approaches for creating knowledge graphs. Major themes include the relationships between knowledge graphs and machine learning, the use of natural language processing to construct knowledge graphs, and the expansion of novel knowledge-based approaches to clinical and biological domains.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":" ","pages":"23-41"},"PeriodicalIF":4.4000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8095730/pdf/nihms-1654586.pdf","citationCount":"0","resultStr":"{\"title\":\"Knowledge-Based Biomedical Data Science.\",\"authors\":\"Tiffany J Callahan, Ignacio J Tripodi, Harrison Pielke-Lombardo, Lawrence E Hunter\",\"doi\":\"10.1146/annurev-biodatasci-010820-091627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Knowledge-based biomedical data science involves the design and implementation of computer systems that act as if they knew about biomedicine. Such systems depend on formally represented knowledge in computer systems, often in the form of knowledge graphs. Here we survey recent progress in systems that use formally represented knowledge to address data science problems in both clinical and biological domains, as well as progress on approaches for creating knowledge graphs. Major themes include the relationships between knowledge graphs and machine learning, the use of natural language processing to construct knowledge graphs, and the expansion of novel knowledge-based approaches to clinical and biological domains.</p>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":\" \",\"pages\":\"23-41\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8095730/pdf/nihms-1654586.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-biodatasci-010820-091627\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/4/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-biodatasci-010820-091627","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/4/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Knowledge-based biomedical data science involves the design and implementation of computer systems that act as if they knew about biomedicine. Such systems depend on formally represented knowledge in computer systems, often in the form of knowledge graphs. Here we survey recent progress in systems that use formally represented knowledge to address data science problems in both clinical and biological domains, as well as progress on approaches for creating knowledge graphs. Major themes include the relationships between knowledge graphs and machine learning, the use of natural language processing to construct knowledge graphs, and the expansion of novel knowledge-based approaches to clinical and biological domains.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.