Dauenpen Meesapyodsuk , Yi Chen , Shengjian Ye , Robert G. Chapman , Xiao Qiu
{"title":"共表达Eranthis hyemalis溶血磷脂酸酰基转移酶2和延长酶提高了两种超长链多不饱和脂肪酸的产量","authors":"Dauenpen Meesapyodsuk , Yi Chen , Shengjian Ye , Robert G. Chapman , Xiao Qiu","doi":"10.1016/j.mec.2021.e00171","DOIUrl":null,"url":null,"abstract":"<div><p>Docosadienoic acid (DDA, 22:2–13,16) and docosatrienoic acid (DTA, 22:3–13,16,19) are two very long chain polyunsaturated fatty acids (VLCPUFAs) that are recently shown to possess strong anti-inflammatory and antitumor properties. An ELO type elongase (EhELO1) from wild plant <em>Eranthis hyemalis</em> can synthesize the two fatty acids by sequential elongation of linoleic acid and alpha-linolenic acid, respectively. Seed-specific expression of this gene in oilseed crop <em>Brassica carinata</em> produced a considerable amount of DDA and DTA in transgenic seeds. However, these fatty acids were excluded from the <em>sn-2</em> position of triacylglycerols (TAGs). To improve the production level and nutrition value of the VLCPUFAs in the transgenic oilseed crop, a cytoplasmic lysophosphatidic acid acyltransferase (EhLPAAT2) for the incorporation of the two fatty acids into the <em>sn</em>-2 position of triacylglycerols was identified from <em>E. hyemalis</em>. RT-PCR analysis showed that it was preferentially expressed in developing seeds where <em>EhELO1</em> was exclusively expressed in <em>E. hyemalis</em>. Seed specific expression of <em>EhLPAAT2</em> along with <em>EhELO1</em> in <em>B. carinata</em> resulted in the effective incorporation of DDA and DTA at the <em>sn-2</em> position of TAGs, thereby increasing the total amount of DDA and DTA in transgenic seeds. To our knowledge, this is the first plant LPAAT that can incorporate VLCPUFAs into TAGs. Improved production of DDA and DTA in the oilseed crop using EhLPAAT2 and EhELO1 provides a real commercial opportunity for high value agriculture products for nutraceutical uses.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mec.2021.e00171","citationCount":"5","resultStr":"{\"title\":\"Co-expressing Eranthis hyemalis lysophosphatidic acid acyltransferase 2 and elongase improves two very long chain polyunsaturated fatty acid production in Brassica carinata\",\"authors\":\"Dauenpen Meesapyodsuk , Yi Chen , Shengjian Ye , Robert G. Chapman , Xiao Qiu\",\"doi\":\"10.1016/j.mec.2021.e00171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Docosadienoic acid (DDA, 22:2–13,16) and docosatrienoic acid (DTA, 22:3–13,16,19) are two very long chain polyunsaturated fatty acids (VLCPUFAs) that are recently shown to possess strong anti-inflammatory and antitumor properties. An ELO type elongase (EhELO1) from wild plant <em>Eranthis hyemalis</em> can synthesize the two fatty acids by sequential elongation of linoleic acid and alpha-linolenic acid, respectively. Seed-specific expression of this gene in oilseed crop <em>Brassica carinata</em> produced a considerable amount of DDA and DTA in transgenic seeds. However, these fatty acids were excluded from the <em>sn-2</em> position of triacylglycerols (TAGs). To improve the production level and nutrition value of the VLCPUFAs in the transgenic oilseed crop, a cytoplasmic lysophosphatidic acid acyltransferase (EhLPAAT2) for the incorporation of the two fatty acids into the <em>sn</em>-2 position of triacylglycerols was identified from <em>E. hyemalis</em>. RT-PCR analysis showed that it was preferentially expressed in developing seeds where <em>EhELO1</em> was exclusively expressed in <em>E. hyemalis</em>. Seed specific expression of <em>EhLPAAT2</em> along with <em>EhELO1</em> in <em>B. carinata</em> resulted in the effective incorporation of DDA and DTA at the <em>sn-2</em> position of TAGs, thereby increasing the total amount of DDA and DTA in transgenic seeds. To our knowledge, this is the first plant LPAAT that can incorporate VLCPUFAs into TAGs. Improved production of DDA and DTA in the oilseed crop using EhLPAAT2 and EhELO1 provides a real commercial opportunity for high value agriculture products for nutraceutical uses.</p></div>\",\"PeriodicalId\":18695,\"journal\":{\"name\":\"Metabolic Engineering Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mec.2021.e00171\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic Engineering Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214030121000110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic Engineering Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214030121000110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Co-expressing Eranthis hyemalis lysophosphatidic acid acyltransferase 2 and elongase improves two very long chain polyunsaturated fatty acid production in Brassica carinata
Docosadienoic acid (DDA, 22:2–13,16) and docosatrienoic acid (DTA, 22:3–13,16,19) are two very long chain polyunsaturated fatty acids (VLCPUFAs) that are recently shown to possess strong anti-inflammatory and antitumor properties. An ELO type elongase (EhELO1) from wild plant Eranthis hyemalis can synthesize the two fatty acids by sequential elongation of linoleic acid and alpha-linolenic acid, respectively. Seed-specific expression of this gene in oilseed crop Brassica carinata produced a considerable amount of DDA and DTA in transgenic seeds. However, these fatty acids were excluded from the sn-2 position of triacylglycerols (TAGs). To improve the production level and nutrition value of the VLCPUFAs in the transgenic oilseed crop, a cytoplasmic lysophosphatidic acid acyltransferase (EhLPAAT2) for the incorporation of the two fatty acids into the sn-2 position of triacylglycerols was identified from E. hyemalis. RT-PCR analysis showed that it was preferentially expressed in developing seeds where EhELO1 was exclusively expressed in E. hyemalis. Seed specific expression of EhLPAAT2 along with EhELO1 in B. carinata resulted in the effective incorporation of DDA and DTA at the sn-2 position of TAGs, thereby increasing the total amount of DDA and DTA in transgenic seeds. To our knowledge, this is the first plant LPAAT that can incorporate VLCPUFAs into TAGs. Improved production of DDA and DTA in the oilseed crop using EhLPAAT2 and EhELO1 provides a real commercial opportunity for high value agriculture products for nutraceutical uses.
期刊介绍:
Metabolic Engineering Communications, a companion title to Metabolic Engineering (MBE), is devoted to publishing original research in the areas of metabolic engineering, synthetic biology, computational biology and systems biology for problems related to metabolism and the engineering of metabolism for the production of fuels, chemicals, and pharmaceuticals. The journal will carry articles on the design, construction, and analysis of biological systems ranging from pathway components to biological complexes and genomes (including genomic, analytical and bioinformatics methods) in suitable host cells to allow them to produce novel compounds of industrial and medical interest. Demonstrations of regulatory designs and synthetic circuits that alter the performance of biochemical pathways and cellular processes will also be presented. Metabolic Engineering Communications complements MBE by publishing articles that are either shorter than those published in the full journal, or which describe key elements of larger metabolic engineering efforts.