Rose-Anna G Pushpass, Shouq Alzoufairi, Kim G Jackson, Julie A Lovegrove
{"title":"循环胆汁酸作为肠道微生物群和心血管健康之间的联系:益生元、益生菌和富含多酚的食物的影响","authors":"Rose-Anna G Pushpass, Shouq Alzoufairi, Kim G Jackson, Julie A Lovegrove","doi":"10.1017/S0954422421000081","DOIUrl":null,"url":null,"abstract":"<p><p>Beneficial effects of probiotic, prebiotic and polyphenol-rich interventions on fasting lipid profiles have been reported, with changes in the gut microbiota composition believed to play an important role in lipid regulation. Primary bile acids, which are involved in the digestion of fats and cholesterol metabolism, can be converted by the gut microbiota to secondary bile acids, some species of which are less well reabsorbed and consequently may be excreted in the stool. This can lead to increased hepatic bile acid neo-synthesis, resulting in a net loss of circulating low-density lipoprotein. Bile acids may therefore provide a link between the gut microbiota and cardiovascular health. This narrative review presents an overview of bile acid metabolism and the role of probiotics, prebiotics and polyphenol-rich foods in modulating circulating cardiovascular disease (CVD) risk markers and bile acids. Although findings from human studies are inconsistent, there is growing evidence for associations between these dietary components and improved lipid CVD risk markers, attributed to modulation of the gut microbiota and bile acid metabolism. These include increased bile acid neo-synthesis, due to bile sequestering action, bile salt metabolising activity and effects of short-chain fatty acids generated through bacterial fermentation of fibres. Animal studies have demonstrated effects on the FXR/FGF-15 axis and hepatic genes involved in bile acid synthesis (CYP7A1) and cholesterol synthesis (SREBP and HMGR). Further human studies are needed to determine the relationship between diet and bile acid metabolism and whether circulating bile acids can be utilised as a potential CVD risk biomarker.</p>","PeriodicalId":54703,"journal":{"name":"Nutrition Research Reviews","volume":"35 2","pages":"161-180"},"PeriodicalIF":5.1000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0954422421000081","citationCount":"35","resultStr":"{\"title\":\"Circulating bile acids as a link between the gut microbiota and cardiovascular health: impact of prebiotics, probiotics and polyphenol-rich foods.\",\"authors\":\"Rose-Anna G Pushpass, Shouq Alzoufairi, Kim G Jackson, Julie A Lovegrove\",\"doi\":\"10.1017/S0954422421000081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Beneficial effects of probiotic, prebiotic and polyphenol-rich interventions on fasting lipid profiles have been reported, with changes in the gut microbiota composition believed to play an important role in lipid regulation. Primary bile acids, which are involved in the digestion of fats and cholesterol metabolism, can be converted by the gut microbiota to secondary bile acids, some species of which are less well reabsorbed and consequently may be excreted in the stool. This can lead to increased hepatic bile acid neo-synthesis, resulting in a net loss of circulating low-density lipoprotein. Bile acids may therefore provide a link between the gut microbiota and cardiovascular health. This narrative review presents an overview of bile acid metabolism and the role of probiotics, prebiotics and polyphenol-rich foods in modulating circulating cardiovascular disease (CVD) risk markers and bile acids. Although findings from human studies are inconsistent, there is growing evidence for associations between these dietary components and improved lipid CVD risk markers, attributed to modulation of the gut microbiota and bile acid metabolism. These include increased bile acid neo-synthesis, due to bile sequestering action, bile salt metabolising activity and effects of short-chain fatty acids generated through bacterial fermentation of fibres. Animal studies have demonstrated effects on the FXR/FGF-15 axis and hepatic genes involved in bile acid synthesis (CYP7A1) and cholesterol synthesis (SREBP and HMGR). Further human studies are needed to determine the relationship between diet and bile acid metabolism and whether circulating bile acids can be utilised as a potential CVD risk biomarker.</p>\",\"PeriodicalId\":54703,\"journal\":{\"name\":\"Nutrition Research Reviews\",\"volume\":\"35 2\",\"pages\":\"161-180\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S0954422421000081\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nutrition Research Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1017/S0954422421000081\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/4/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0954422421000081","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
Circulating bile acids as a link between the gut microbiota and cardiovascular health: impact of prebiotics, probiotics and polyphenol-rich foods.
Beneficial effects of probiotic, prebiotic and polyphenol-rich interventions on fasting lipid profiles have been reported, with changes in the gut microbiota composition believed to play an important role in lipid regulation. Primary bile acids, which are involved in the digestion of fats and cholesterol metabolism, can be converted by the gut microbiota to secondary bile acids, some species of which are less well reabsorbed and consequently may be excreted in the stool. This can lead to increased hepatic bile acid neo-synthesis, resulting in a net loss of circulating low-density lipoprotein. Bile acids may therefore provide a link between the gut microbiota and cardiovascular health. This narrative review presents an overview of bile acid metabolism and the role of probiotics, prebiotics and polyphenol-rich foods in modulating circulating cardiovascular disease (CVD) risk markers and bile acids. Although findings from human studies are inconsistent, there is growing evidence for associations between these dietary components and improved lipid CVD risk markers, attributed to modulation of the gut microbiota and bile acid metabolism. These include increased bile acid neo-synthesis, due to bile sequestering action, bile salt metabolising activity and effects of short-chain fatty acids generated through bacterial fermentation of fibres. Animal studies have demonstrated effects on the FXR/FGF-15 axis and hepatic genes involved in bile acid synthesis (CYP7A1) and cholesterol synthesis (SREBP and HMGR). Further human studies are needed to determine the relationship between diet and bile acid metabolism and whether circulating bile acids can be utilised as a potential CVD risk biomarker.
期刊介绍:
Nutrition Research Reviews offers a comprehensive overview of nutritional science today. By distilling the latest research and linking it to established practice, the journal consistently delivers the widest range of in-depth articles in the field of nutritional science. It presents up-to-date, critical reviews of key topics in nutrition science advancing new concepts and hypotheses that encourage the exchange of fundamental ideas on nutritional well-being in both humans and animals.