{"title":"无肺蝾螈线粒体蛋白编码基因的自然选择模式:多齿螈科的放松纯化选择和正选择密码子位点的存在。","authors":"Ryosuke Kakehashi, Atsushi Kurabayashi","doi":"10.1155/2021/6671300","DOIUrl":null,"url":null,"abstract":"<p><p>There are two distinct lungless groups in caudate amphibians (salamanders and newts) (the family Plethodontidae and the genus <i>Onychodactylus</i>, from the family Hynobiidae). Lunglessness is considered to have evolved in response to environmental and/or ecological adaptation with respect to oxygen requirements. We performed selection analyses on lungless salamanders to elucidate the selective patterns of mitochondrial protein-coding genes associated with lunglessness. The branch model and RELAX analyses revealed the occurrence of relaxed selection (an increase of the dN/dS ratio = <i>ω</i> value) in most mitochondrial protein-coding genes of plethodontid salamander branches but not in those of <i>Onychodactylus</i>. Additional branch model and RELAX analyses indicated that direct-developing plethodontids showed the relaxed pattern for most mitochondrial genes, although metamorphosing plethodontids had fewer relaxed genes. Furthermore, aBSREL analysis detected positively selected codons in three plethodontid branches but not in <i>Onychodactylus</i>. One of these three branches corresponded to the most recent common ancestor, and the others corresponded with the most recent common ancestors of direct-developing branches within Hemidactyliinae. The positive selection of mitochondrial protein-coding genes in Plethodontidae is probably associated with the evolution of direct development.</p>","PeriodicalId":13988,"journal":{"name":"International Journal of Genomics","volume":"2021 ","pages":"6671300"},"PeriodicalIF":2.6000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8053045/pdf/","citationCount":"0","resultStr":"{\"title\":\"Patterns of Natural Selection on Mitochondrial Protein-Coding Genes in Lungless Salamanders: Relaxed Purifying Selection and Presence of Positively Selected Codon Sites in the Family Plethodontidae.\",\"authors\":\"Ryosuke Kakehashi, Atsushi Kurabayashi\",\"doi\":\"10.1155/2021/6671300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There are two distinct lungless groups in caudate amphibians (salamanders and newts) (the family Plethodontidae and the genus <i>Onychodactylus</i>, from the family Hynobiidae). Lunglessness is considered to have evolved in response to environmental and/or ecological adaptation with respect to oxygen requirements. We performed selection analyses on lungless salamanders to elucidate the selective patterns of mitochondrial protein-coding genes associated with lunglessness. The branch model and RELAX analyses revealed the occurrence of relaxed selection (an increase of the dN/dS ratio = <i>ω</i> value) in most mitochondrial protein-coding genes of plethodontid salamander branches but not in those of <i>Onychodactylus</i>. Additional branch model and RELAX analyses indicated that direct-developing plethodontids showed the relaxed pattern for most mitochondrial genes, although metamorphosing plethodontids had fewer relaxed genes. Furthermore, aBSREL analysis detected positively selected codons in three plethodontid branches but not in <i>Onychodactylus</i>. One of these three branches corresponded to the most recent common ancestor, and the others corresponded with the most recent common ancestors of direct-developing branches within Hemidactyliinae. The positive selection of mitochondrial protein-coding genes in Plethodontidae is probably associated with the evolution of direct development.</p>\",\"PeriodicalId\":13988,\"journal\":{\"name\":\"International Journal of Genomics\",\"volume\":\"2021 \",\"pages\":\"6671300\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8053045/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/6671300\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2021/6671300","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Patterns of Natural Selection on Mitochondrial Protein-Coding Genes in Lungless Salamanders: Relaxed Purifying Selection and Presence of Positively Selected Codon Sites in the Family Plethodontidae.
There are two distinct lungless groups in caudate amphibians (salamanders and newts) (the family Plethodontidae and the genus Onychodactylus, from the family Hynobiidae). Lunglessness is considered to have evolved in response to environmental and/or ecological adaptation with respect to oxygen requirements. We performed selection analyses on lungless salamanders to elucidate the selective patterns of mitochondrial protein-coding genes associated with lunglessness. The branch model and RELAX analyses revealed the occurrence of relaxed selection (an increase of the dN/dS ratio = ω value) in most mitochondrial protein-coding genes of plethodontid salamander branches but not in those of Onychodactylus. Additional branch model and RELAX analyses indicated that direct-developing plethodontids showed the relaxed pattern for most mitochondrial genes, although metamorphosing plethodontids had fewer relaxed genes. Furthermore, aBSREL analysis detected positively selected codons in three plethodontid branches but not in Onychodactylus. One of these three branches corresponded to the most recent common ancestor, and the others corresponded with the most recent common ancestors of direct-developing branches within Hemidactyliinae. The positive selection of mitochondrial protein-coding genes in Plethodontidae is probably associated with the evolution of direct development.
期刊介绍:
International Journal of Genomics is a peer-reviewed, Open Access journal that publishes research articles as well as review articles in all areas of genome-scale analysis. Topics covered by the journal include, but are not limited to: bioinformatics, clinical genomics, disease genomics, epigenomics, evolutionary genomics, functional genomics, genome engineering, and synthetic genomics.