出生后小鼠乳腺的综合单细胞转录组图谱允许发现新的腔室发育轨迹。

IF 3 4区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Martín E García Solá, Micaela Stedile, Inés Beckerman, Edith C Kordon
{"title":"出生后小鼠乳腺的综合单细胞转录组图谱允许发现新的腔室发育轨迹。","authors":"Martín E García Solá,&nbsp;Micaela Stedile,&nbsp;Inés Beckerman,&nbsp;Edith C Kordon","doi":"10.1007/s10911-021-09488-1","DOIUrl":null,"url":null,"abstract":"<p><p>The mammary gland is a highly dynamic organ which undergoes periods of expansion, differentiation and cell death in each reproductive cycle. Partly because of the dynamic nature of the gland, mammary epithelial cells (MECs) are extraordinarily heterogeneous. Single cell RNA-seq (scRNA-seq) analyses have contributed to understand the cellular and transcriptional heterogeneity of this complex tissue. Here, we integrate scRNA-seq data from three foundational reports that have explored the mammary gland cell populations throughout development at single-cell level using 10× Chromium Drop-Seq. We center our analysis on post-natal development of the mammary gland, from puberty to post-involution. The new integrated study corresponds to RNA sequences from 53,686 individual cells, which greatly outnumbers the three initial data sets. The large volume of information provides new insights, as a better resolution of the previously detected Procr<sup>+</sup> stem-like cell subpopulation or the identification of a novel group of MECs expressing immune-like markers. Moreover, here we present new pseudo-temporal trajectories of MEC populations at two resolution levels, that is either considering all mammary cell subtypes or focusing specifically on the luminal lineages. Interestingly, the luminal-restricted analysis reveals distinct expression patterns of various genes that encode milk proteins, suggesting specific and non-redundant roles for each of them. In summary, our data show that the application of bioinformatic tools to integrate multiple scRNA-seq data-sets helps to describe and interpret the high level of plasticity involved in gene expression regulation throughout mammary gland post-natal development.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10911-021-09488-1","citationCount":"5","resultStr":"{\"title\":\"An Integrative Single-cell Transcriptomic Atlas of the Post-natal Mouse Mammary Gland Allows Discovery of New Developmental Trajectories in the Luminal Compartment.\",\"authors\":\"Martín E García Solá,&nbsp;Micaela Stedile,&nbsp;Inés Beckerman,&nbsp;Edith C Kordon\",\"doi\":\"10.1007/s10911-021-09488-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mammary gland is a highly dynamic organ which undergoes periods of expansion, differentiation and cell death in each reproductive cycle. Partly because of the dynamic nature of the gland, mammary epithelial cells (MECs) are extraordinarily heterogeneous. Single cell RNA-seq (scRNA-seq) analyses have contributed to understand the cellular and transcriptional heterogeneity of this complex tissue. Here, we integrate scRNA-seq data from three foundational reports that have explored the mammary gland cell populations throughout development at single-cell level using 10× Chromium Drop-Seq. We center our analysis on post-natal development of the mammary gland, from puberty to post-involution. The new integrated study corresponds to RNA sequences from 53,686 individual cells, which greatly outnumbers the three initial data sets. The large volume of information provides new insights, as a better resolution of the previously detected Procr<sup>+</sup> stem-like cell subpopulation or the identification of a novel group of MECs expressing immune-like markers. Moreover, here we present new pseudo-temporal trajectories of MEC populations at two resolution levels, that is either considering all mammary cell subtypes or focusing specifically on the luminal lineages. Interestingly, the luminal-restricted analysis reveals distinct expression patterns of various genes that encode milk proteins, suggesting specific and non-redundant roles for each of them. In summary, our data show that the application of bioinformatic tools to integrate multiple scRNA-seq data-sets helps to describe and interpret the high level of plasticity involved in gene expression regulation throughout mammary gland post-natal development.</p>\",\"PeriodicalId\":16413,\"journal\":{\"name\":\"Journal of Mammary Gland Biology and Neoplasia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10911-021-09488-1\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mammary Gland Biology and Neoplasia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10911-021-09488-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/4/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mammary Gland Biology and Neoplasia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10911-021-09488-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 5

摘要

乳腺是一个高度动态的器官,在每个生殖周期中都会经历扩张、分化和细胞死亡的时期。部分由于乳腺的动态性,乳腺上皮细胞(MECs)是非常异质的。单细胞RNA-seq (scRNA-seq)分析有助于了解这种复杂组织的细胞和转录异质性。在这里,我们整合了来自三个基础报告的scRNA-seq数据,这些报告使用10x Chromium Drop-Seq在单细胞水平上探索了乳腺细胞群的整个发育过程。我们的分析集中在产后乳腺的发育,从青春期到绝经后。新的综合研究对应于来自53,686个单个细胞的RNA序列,这大大超过了三个初始数据集。大量的信息提供了新的见解,如更好地解决先前检测到的Procr+干细胞样细胞亚群或鉴定一组表达免疫样标记的新型mec。此外,在这里,我们提出了MEC群体在两个分辨率水平上的新的伪时间轨迹,要么考虑所有乳腺细胞亚型,要么专门关注腔系。有趣的是,光限制分析揭示了编码牛奶蛋白的不同基因的不同表达模式,表明每个基因都有特定的和非冗余的作用。总之,我们的数据表明,应用生物信息学工具整合多个scRNA-seq数据集有助于描述和解释在整个乳腺产后发育过程中参与基因表达调控的高水平可塑性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Integrative Single-cell Transcriptomic Atlas of the Post-natal Mouse Mammary Gland Allows Discovery of New Developmental Trajectories in the Luminal Compartment.

The mammary gland is a highly dynamic organ which undergoes periods of expansion, differentiation and cell death in each reproductive cycle. Partly because of the dynamic nature of the gland, mammary epithelial cells (MECs) are extraordinarily heterogeneous. Single cell RNA-seq (scRNA-seq) analyses have contributed to understand the cellular and transcriptional heterogeneity of this complex tissue. Here, we integrate scRNA-seq data from three foundational reports that have explored the mammary gland cell populations throughout development at single-cell level using 10× Chromium Drop-Seq. We center our analysis on post-natal development of the mammary gland, from puberty to post-involution. The new integrated study corresponds to RNA sequences from 53,686 individual cells, which greatly outnumbers the three initial data sets. The large volume of information provides new insights, as a better resolution of the previously detected Procr+ stem-like cell subpopulation or the identification of a novel group of MECs expressing immune-like markers. Moreover, here we present new pseudo-temporal trajectories of MEC populations at two resolution levels, that is either considering all mammary cell subtypes or focusing specifically on the luminal lineages. Interestingly, the luminal-restricted analysis reveals distinct expression patterns of various genes that encode milk proteins, suggesting specific and non-redundant roles for each of them. In summary, our data show that the application of bioinformatic tools to integrate multiple scRNA-seq data-sets helps to describe and interpret the high level of plasticity involved in gene expression regulation throughout mammary gland post-natal development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mammary Gland Biology and Neoplasia
Journal of Mammary Gland Biology and Neoplasia 医学-内分泌学与代谢
CiteScore
5.30
自引率
4.00%
发文量
22
期刊介绍: Journal of Mammary Gland Biology and Neoplasia is the leading Journal in the field of mammary gland biology that provides researchers within and outside the field of mammary gland biology with an integrated source of information pertaining to the development, function, and pathology of the mammary gland and its function. Commencing in 2015, the Journal will begin receiving and publishing a combination of reviews and original, peer-reviewed research. The Journal covers all topics related to the field of mammary gland biology, including mammary development, breast cancer biology, lactation, and milk composition and quality. The environmental, endocrine, nutritional, and molecular factors regulating these processes is covered, including from a comparative biology perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信