Giovanni Anobile, Maria C Morrone, Daniela Ricci, Francesca Gallini, Ilaria Merusi, Francesca Tinelli
{"title":"早产新生儿的典型跨模态数字感知","authors":"Giovanni Anobile, Maria C Morrone, Daniela Ricci, Francesca Gallini, Ilaria Merusi, Francesca Tinelli","doi":"10.1163/22134808-bja10051","DOIUrl":null,"url":null,"abstract":"<p><p>Premature birth is associated with a high risk of damage in the parietal cortex, a key area for numerical and non-numerical magnitude perception and mathematical reasoning. Children born preterm have higher rates of learning difficulties for school mathematics. In this study, we investigated how preterm newborns (born at 28-34 weeks of gestation age) and full-term newborns respond to visual numerosity after habituation to auditory stimuli of different numerosities. The results show that the two groups have a similar preferential looking response to visual numerosity, both preferring the incongruent set after crossmodal habituation. These results suggest that the numerosity system is resistant to prematurity.</p>","PeriodicalId":51298,"journal":{"name":"Multisensory Research","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Typical Crossmodal Numerosity Perception in Preterm Newborns.\",\"authors\":\"Giovanni Anobile, Maria C Morrone, Daniela Ricci, Francesca Gallini, Ilaria Merusi, Francesca Tinelli\",\"doi\":\"10.1163/22134808-bja10051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Premature birth is associated with a high risk of damage in the parietal cortex, a key area for numerical and non-numerical magnitude perception and mathematical reasoning. Children born preterm have higher rates of learning difficulties for school mathematics. In this study, we investigated how preterm newborns (born at 28-34 weeks of gestation age) and full-term newborns respond to visual numerosity after habituation to auditory stimuli of different numerosities. The results show that the two groups have a similar preferential looking response to visual numerosity, both preferring the incongruent set after crossmodal habituation. These results suggest that the numerosity system is resistant to prematurity.</p>\",\"PeriodicalId\":51298,\"journal\":{\"name\":\"Multisensory Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multisensory Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1163/22134808-bja10051\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multisensory Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1163/22134808-bja10051","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Typical Crossmodal Numerosity Perception in Preterm Newborns.
Premature birth is associated with a high risk of damage in the parietal cortex, a key area for numerical and non-numerical magnitude perception and mathematical reasoning. Children born preterm have higher rates of learning difficulties for school mathematics. In this study, we investigated how preterm newborns (born at 28-34 weeks of gestation age) and full-term newborns respond to visual numerosity after habituation to auditory stimuli of different numerosities. The results show that the two groups have a similar preferential looking response to visual numerosity, both preferring the incongruent set after crossmodal habituation. These results suggest that the numerosity system is resistant to prematurity.
期刊介绍:
Multisensory Research is an interdisciplinary archival journal covering all aspects of multisensory processing including the control of action, cognition and attention. Research using any approach to increase our understanding of multisensory perceptual, behavioural, neural and computational mechanisms is encouraged. Empirical, neurophysiological, psychophysical, brain imaging, clinical, developmental, mathematical and computational analyses are welcome. Research will also be considered covering multisensory applications such as sensory substitution, crossmodal methods for delivering sensory information or multisensory approaches to robotics and engineering. Short communications and technical notes that draw attention to new developments will be included, as will reviews and commentaries on current issues. Special issues dealing with specific topics will be announced from time to time. Multisensory Research is a continuation of Seeing and Perceiving, and of Spatial Vision.