{"title":"长链非编码RNA NEAT1通过调节miR-93-5p/TXNIP轴促进脂多糖诱导的人小管上皮细胞损伤。","authors":"Jing Yang, Lin Wu, Shanshou Liu, Xiaomin Hu, Qianmei Wang, Liying Fang","doi":"10.1007/s00430-021-00705-6","DOIUrl":null,"url":null,"abstract":"<p><p>Many long non-coding RNAs (lncRNAs) have been found to play crucial roles in sepsis-induced acute kidney injury (AKI), including lncRNA nuclear-enriched abundant transcript 1 (NEAT1). We aimed to further elucidate the functions and molecular mechanism of NEAT1 in sepsis-induced AKI. Sepsis-induced AKI cell model was established by treatment with lipopolysaccharide (LPS) in human tubule epithelial (HK2) cells. Cell viability and apoptosis were determined by Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. Western blot assay was performed to measure all protein levels. The concentrations of inflammatory factors were evaluated using enzyme-linked immunosorbent assay (ELISA). The expression levels of inflammatory factors, NEAT1, microRNA-93-5p (miR-93-5p), and thioredoxin-interacting protein (TXNIP) were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The oxidative stress factors were detected using corresponding kits. The interaction between miR-93-5p and NEAT1 or TXNIP was predicted by bioinformatics analysis and verified by dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. NEAT1 was upregulated in serum of sepsis patients and LPS-induced HK2 cells. NEAT1 silence alleviated LPS-induced HK2 cell injury by inhibiting apoptosis, inflammation and oxidative stress. Moreover, miR-93-5p was a direct target of NEAT1, and suppression of NEAT1 weakened LPS-induced injury by upregulating miR-93-5p in HK2 cells. Furthermore, TXNIP was a downstream target of miR-93-5p, and miR-93-5p attenuated LPS-induced HK2 cell injury by downregulating TXNIP. In addition, NEAT1 regulated TXNIP expression by acting as a sponge of miR-93-5p. NEAT1 might aggravate LPS-induced injury in HK2 cells by regulating miR-93-5p/TXNIP axis, providing a potential therapeutic strategy for sepsis-associated AKI.</p>","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":"210 2-3","pages":"121-132"},"PeriodicalIF":5.5000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00430-021-00705-6","citationCount":"15","resultStr":"{\"title\":\"Long non-coding RNA NEAT1 promotes lipopolysaccharide-induced injury in human tubule epithelial cells by regulating miR-93-5p/TXNIP axis.\",\"authors\":\"Jing Yang, Lin Wu, Shanshou Liu, Xiaomin Hu, Qianmei Wang, Liying Fang\",\"doi\":\"10.1007/s00430-021-00705-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many long non-coding RNAs (lncRNAs) have been found to play crucial roles in sepsis-induced acute kidney injury (AKI), including lncRNA nuclear-enriched abundant transcript 1 (NEAT1). We aimed to further elucidate the functions and molecular mechanism of NEAT1 in sepsis-induced AKI. Sepsis-induced AKI cell model was established by treatment with lipopolysaccharide (LPS) in human tubule epithelial (HK2) cells. Cell viability and apoptosis were determined by Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. Western blot assay was performed to measure all protein levels. The concentrations of inflammatory factors were evaluated using enzyme-linked immunosorbent assay (ELISA). The expression levels of inflammatory factors, NEAT1, microRNA-93-5p (miR-93-5p), and thioredoxin-interacting protein (TXNIP) were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The oxidative stress factors were detected using corresponding kits. The interaction between miR-93-5p and NEAT1 or TXNIP was predicted by bioinformatics analysis and verified by dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. NEAT1 was upregulated in serum of sepsis patients and LPS-induced HK2 cells. NEAT1 silence alleviated LPS-induced HK2 cell injury by inhibiting apoptosis, inflammation and oxidative stress. Moreover, miR-93-5p was a direct target of NEAT1, and suppression of NEAT1 weakened LPS-induced injury by upregulating miR-93-5p in HK2 cells. Furthermore, TXNIP was a downstream target of miR-93-5p, and miR-93-5p attenuated LPS-induced HK2 cell injury by downregulating TXNIP. In addition, NEAT1 regulated TXNIP expression by acting as a sponge of miR-93-5p. NEAT1 might aggravate LPS-induced injury in HK2 cells by regulating miR-93-5p/TXNIP axis, providing a potential therapeutic strategy for sepsis-associated AKI.</p>\",\"PeriodicalId\":18369,\"journal\":{\"name\":\"Medical Microbiology and Immunology\",\"volume\":\"210 2-3\",\"pages\":\"121-132\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00430-021-00705-6\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Microbiology and Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00430-021-00705-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/4/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Microbiology and Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00430-021-00705-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Long non-coding RNA NEAT1 promotes lipopolysaccharide-induced injury in human tubule epithelial cells by regulating miR-93-5p/TXNIP axis.
Many long non-coding RNAs (lncRNAs) have been found to play crucial roles in sepsis-induced acute kidney injury (AKI), including lncRNA nuclear-enriched abundant transcript 1 (NEAT1). We aimed to further elucidate the functions and molecular mechanism of NEAT1 in sepsis-induced AKI. Sepsis-induced AKI cell model was established by treatment with lipopolysaccharide (LPS) in human tubule epithelial (HK2) cells. Cell viability and apoptosis were determined by Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. Western blot assay was performed to measure all protein levels. The concentrations of inflammatory factors were evaluated using enzyme-linked immunosorbent assay (ELISA). The expression levels of inflammatory factors, NEAT1, microRNA-93-5p (miR-93-5p), and thioredoxin-interacting protein (TXNIP) were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The oxidative stress factors were detected using corresponding kits. The interaction between miR-93-5p and NEAT1 or TXNIP was predicted by bioinformatics analysis and verified by dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. NEAT1 was upregulated in serum of sepsis patients and LPS-induced HK2 cells. NEAT1 silence alleviated LPS-induced HK2 cell injury by inhibiting apoptosis, inflammation and oxidative stress. Moreover, miR-93-5p was a direct target of NEAT1, and suppression of NEAT1 weakened LPS-induced injury by upregulating miR-93-5p in HK2 cells. Furthermore, TXNIP was a downstream target of miR-93-5p, and miR-93-5p attenuated LPS-induced HK2 cell injury by downregulating TXNIP. In addition, NEAT1 regulated TXNIP expression by acting as a sponge of miR-93-5p. NEAT1 might aggravate LPS-induced injury in HK2 cells by regulating miR-93-5p/TXNIP axis, providing a potential therapeutic strategy for sepsis-associated AKI.
期刊介绍:
Medical Microbiology and Immunology (MMIM) publishes key findings on all aspects of the interrelationship between infectious agents and the immune system of their hosts. The journal´s main focus is original research work on intrinsic, innate or adaptive immune responses to viral, bacterial, fungal and parasitic (protozoan and helminthic) infections and on the virulence of the respective infectious pathogens.
MMIM covers basic, translational as well as clinical research in infectious diseases and infectious disease immunology. Basic research using cell cultures, organoid, and animal models are welcome, provided that the models have a clinical correlate and address a relevant medical question.
The journal also considers manuscripts on the epidemiology of infectious diseases, including the emergence and epidemic spreading of pathogens and the development of resistance to anti-infective therapies, and on novel vaccines and other innovative measurements of prevention.
The following categories of manuscripts will not be considered for publication in MMIM:
submissions of preliminary work, of merely descriptive data sets without investigation of mechanisms or of limited global interest,
manuscripts on existing or novel anti-infective compounds, which focus on pharmaceutical or pharmacological aspects of the drugs,
manuscripts on existing or modified vaccines, unless they report on experimental or clinical efficacy studies or provide new immunological information on their mode of action,
manuscripts on the diagnostics of infectious diseases, unless they offer a novel concept to solve a pending diagnostic problem,
case reports or case series, unless they are embedded in a study that focuses on the anti-infectious immune response and/or on the virulence of a pathogen.