Nick Fackler, Björn D Heijstra, Blake J Rasor, Hunter Brown, Jacob Martin, Zhuofu Ni, Kevin M Shebek, Rick R Rosin, Séan D Simpson, Keith E Tyo, Richard J Giannone, Robert L Hettich, Timothy J Tschaplinski, Ching Leang, Steven D Brown, Michael C Jewett, Michael Köpke
{"title":"踩在气体上走向循环经济:加速发展气体发酵的负碳化工生产。","authors":"Nick Fackler, Björn D Heijstra, Blake J Rasor, Hunter Brown, Jacob Martin, Zhuofu Ni, Kevin M Shebek, Rick R Rosin, Séan D Simpson, Keith E Tyo, Richard J Giannone, Robert L Hettich, Timothy J Tschaplinski, Ching Leang, Steven D Brown, Michael C Jewett, Michael Köpke","doi":"10.1146/annurev-chembioeng-120120-021122","DOIUrl":null,"url":null,"abstract":"<p><p>Owing to rising levels of greenhouse gases in our atmosphere and oceans, climate change poses significant environmental, economic, and social challenges globally. Technologies that enable carbon capture and conversion of greenhouse gases into useful products will help mitigate climate change by enabling a new circular carbon economy. Gas fermentation usingcarbon-fixing microorganisms offers an economically viable and scalable solution with unique feedstock and product flexibility that has been commercialized recently. We review the state of the art of gas fermentation and discuss opportunities to accelerate future development and rollout. We discuss the current commercial process for conversion of waste gases to ethanol, including the underlying biology, challenges in process scale-up, and progress on genetic tool development and metabolic engineering to expand the product spectrum. We emphasize key enabling technologies to accelerate strain development for acetogens and other nonmodel organisms.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Stepping on the Gas to a Circular Economy: Accelerating Development of Carbon-Negative Chemical Production from Gas Fermentation.\",\"authors\":\"Nick Fackler, Björn D Heijstra, Blake J Rasor, Hunter Brown, Jacob Martin, Zhuofu Ni, Kevin M Shebek, Rick R Rosin, Séan D Simpson, Keith E Tyo, Richard J Giannone, Robert L Hettich, Timothy J Tschaplinski, Ching Leang, Steven D Brown, Michael C Jewett, Michael Köpke\",\"doi\":\"10.1146/annurev-chembioeng-120120-021122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Owing to rising levels of greenhouse gases in our atmosphere and oceans, climate change poses significant environmental, economic, and social challenges globally. Technologies that enable carbon capture and conversion of greenhouse gases into useful products will help mitigate climate change by enabling a new circular carbon economy. Gas fermentation usingcarbon-fixing microorganisms offers an economically viable and scalable solution with unique feedstock and product flexibility that has been commercialized recently. We review the state of the art of gas fermentation and discuss opportunities to accelerate future development and rollout. We discuss the current commercial process for conversion of waste gases to ethanol, including the underlying biology, challenges in process scale-up, and progress on genetic tool development and metabolic engineering to expand the product spectrum. We emphasize key enabling technologies to accelerate strain development for acetogens and other nonmodel organisms.</p>\",\"PeriodicalId\":8234,\"journal\":{\"name\":\"Annual review of chemical and biomolecular engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of chemical and biomolecular engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-chembioeng-120120-021122\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/4/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of chemical and biomolecular engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-chembioeng-120120-021122","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Stepping on the Gas to a Circular Economy: Accelerating Development of Carbon-Negative Chemical Production from Gas Fermentation.
Owing to rising levels of greenhouse gases in our atmosphere and oceans, climate change poses significant environmental, economic, and social challenges globally. Technologies that enable carbon capture and conversion of greenhouse gases into useful products will help mitigate climate change by enabling a new circular carbon economy. Gas fermentation usingcarbon-fixing microorganisms offers an economically viable and scalable solution with unique feedstock and product flexibility that has been commercialized recently. We review the state of the art of gas fermentation and discuss opportunities to accelerate future development and rollout. We discuss the current commercial process for conversion of waste gases to ethanol, including the underlying biology, challenges in process scale-up, and progress on genetic tool development and metabolic engineering to expand the product spectrum. We emphasize key enabling technologies to accelerate strain development for acetogens and other nonmodel organisms.
期刊介绍:
The Annual Review of Chemical and Biomolecular Engineering aims to provide a perspective on the broad field of chemical (and related) engineering. The journal draws from disciplines as diverse as biology, physics, and engineering, with development of chemical products and processes as the unifying theme.