Ally Yeketi Ayinla, Wan Ainun Mior Othman, Musa Rabiu
{"title":"结核病流行的数学模型","authors":"Ally Yeketi Ayinla, Wan Ainun Mior Othman, Musa Rabiu","doi":"10.1007/s10441-020-09406-8","DOIUrl":null,"url":null,"abstract":"<div><p>Tuberculosis has continued to retain its title as “the captain among these men of death”. This is evident as it is the leading cause of death globally from a single infectious agent. TB as it is fondly called has become a major threat to the achievement of the sustainable development goals (SDG) and hence require inputs from different research disciplines. This work presents a mathematical model of tuberculosis. A compartmental model of seven classes was used in the model formulation comprising of the susceptible S, vaccinated V, exposed E, undiagnosed infectious <i>I</i><sub>1</sub>, diagnosed infectious <i>I</i><sub>2</sub>, treated <i>T</i> and recovered R. The stability analysis of the model was established as well as the condition for the model to undergo backward bifurcation. With the existence of backward bifurcation, keeping the basic reproduction number less than unity <span>\\(({R_{0}}<1)\\)</span> is no more sufficient to keep TB out of the community. Hence, it is shown by the analysis that vaccination program, diagnosis and treatment helps to control the TB dynamics. In furtherance to that, it is shown that preference should be given to diagnosis over treatment as diagnosis precedes treatment. It is as well shown that at lower vaccination rate (0–20%), TB would still be endemic in the population. As such, high vaccination rate is required to send TB out of the community.</p></div>","PeriodicalId":7057,"journal":{"name":"Acta Biotheoretica","volume":"69 3","pages":"225 - 255"},"PeriodicalIF":1.4000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10441-020-09406-8","citationCount":"7","resultStr":"{\"title\":\"A Mathematical Model of the Tuberculosis Epidemic\",\"authors\":\"Ally Yeketi Ayinla, Wan Ainun Mior Othman, Musa Rabiu\",\"doi\":\"10.1007/s10441-020-09406-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tuberculosis has continued to retain its title as “the captain among these men of death”. This is evident as it is the leading cause of death globally from a single infectious agent. TB as it is fondly called has become a major threat to the achievement of the sustainable development goals (SDG) and hence require inputs from different research disciplines. This work presents a mathematical model of tuberculosis. A compartmental model of seven classes was used in the model formulation comprising of the susceptible S, vaccinated V, exposed E, undiagnosed infectious <i>I</i><sub>1</sub>, diagnosed infectious <i>I</i><sub>2</sub>, treated <i>T</i> and recovered R. The stability analysis of the model was established as well as the condition for the model to undergo backward bifurcation. With the existence of backward bifurcation, keeping the basic reproduction number less than unity <span>\\\\(({R_{0}}<1)\\\\)</span> is no more sufficient to keep TB out of the community. Hence, it is shown by the analysis that vaccination program, diagnosis and treatment helps to control the TB dynamics. In furtherance to that, it is shown that preference should be given to diagnosis over treatment as diagnosis precedes treatment. It is as well shown that at lower vaccination rate (0–20%), TB would still be endemic in the population. As such, high vaccination rate is required to send TB out of the community.</p></div>\",\"PeriodicalId\":7057,\"journal\":{\"name\":\"Acta Biotheoretica\",\"volume\":\"69 3\",\"pages\":\"225 - 255\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10441-020-09406-8\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Biotheoretica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10441-020-09406-8\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biotheoretica","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10441-020-09406-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Tuberculosis has continued to retain its title as “the captain among these men of death”. This is evident as it is the leading cause of death globally from a single infectious agent. TB as it is fondly called has become a major threat to the achievement of the sustainable development goals (SDG) and hence require inputs from different research disciplines. This work presents a mathematical model of tuberculosis. A compartmental model of seven classes was used in the model formulation comprising of the susceptible S, vaccinated V, exposed E, undiagnosed infectious I1, diagnosed infectious I2, treated T and recovered R. The stability analysis of the model was established as well as the condition for the model to undergo backward bifurcation. With the existence of backward bifurcation, keeping the basic reproduction number less than unity \(({R_{0}}<1)\) is no more sufficient to keep TB out of the community. Hence, it is shown by the analysis that vaccination program, diagnosis and treatment helps to control the TB dynamics. In furtherance to that, it is shown that preference should be given to diagnosis over treatment as diagnosis precedes treatment. It is as well shown that at lower vaccination rate (0–20%), TB would still be endemic in the population. As such, high vaccination rate is required to send TB out of the community.
期刊介绍:
Acta Biotheoretica is devoted to the promotion of theoretical biology, encompassing mathematical biology and the philosophy of biology, paying special attention to the methodology of formation of biological theory.
Papers on all kind of biological theories are welcome. Interesting subjects include philosophy of biology, biomathematics, computational biology, genetics, ecology and morphology. The process of theory formation can be presented in verbal or mathematical form. Moreover, purely methodological papers can be devoted to the historical origins of the philosophy underlying biological theories and concepts.
Papers should contain clear statements of biological assumptions, and where applicable, a justification of their translation into mathematical form and a detailed discussion of the mathematical treatment. The connection to empirical data should be clarified.
Acta Biotheoretica also welcomes critical book reviews, short comments on previous papers and short notes directing attention to interesting new theoretical ideas.