{"title":"1970 - 2018年全球河湖沉积物重金属污染趋势及来源","authors":"Yandong Niu, Falin Chen, Youzhi Li, Bo Ren","doi":"10.1007/398_2020_59","DOIUrl":null,"url":null,"abstract":"<p><p>Heavy metal pollution is a global problem although its sources and trends differ by region and time. To data, no published research has reported heavy metal pollution in global rivers and lakes. This study reviewed past sampling data across six continents from 1970 to 2018 and analyzed the trends and sources of 10 heavy metal species in sediments from 289 rivers and 133 lakes. Collectively, river sediments showed increasing trends in Cd, Cr, Ni, Mn, and Co and decreasing trends in Hg, indicating that rivers acted as a sink for the former and a source for the latter. Lake sediments showed increasing trends in Pb, Hg, Cr, and Mn, and decreasing trends in Cd, Zn, and As, indicating that lakes acted as a sink for the former and a source for the latter. Due to difference in natural backgrounds and development stage in continents, mean metal concentrations were generally higher in Europe and North America than in Africa, Asia, and South America. Principal component analysis showed that main metal source was mining and manufacturing from the 1970s to 1990s and domestic waste discharge from the 2000s to 2010s. Metal sources in sediments differed greatly by continent, with rock weathering dominant in Africa, mining and manufacturing dominant in North America, and domestic waste discharge dominant in Asia and Europe. Global trends in sediment metal loads and pollution-control measures suggest that the implementation of rigorous standards on metal emissions, limitations on metal concentrations in manufactured products, and the pretreatment of metal-contaminated waste have been effective at controlling heavy metal pollution in rivers and lakes. Thus, these efforts should be extended globally.</p>","PeriodicalId":21182,"journal":{"name":"Reviews of environmental contamination and toxicology","volume":"257 ","pages":"1-35"},"PeriodicalIF":6.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/398_2020_59","citationCount":"16","resultStr":"{\"title\":\"Trends and Sources of Heavy Metal Pollution in Global River and Lake Sediments from 1970 to 2018.\",\"authors\":\"Yandong Niu, Falin Chen, Youzhi Li, Bo Ren\",\"doi\":\"10.1007/398_2020_59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heavy metal pollution is a global problem although its sources and trends differ by region and time. To data, no published research has reported heavy metal pollution in global rivers and lakes. This study reviewed past sampling data across six continents from 1970 to 2018 and analyzed the trends and sources of 10 heavy metal species in sediments from 289 rivers and 133 lakes. Collectively, river sediments showed increasing trends in Cd, Cr, Ni, Mn, and Co and decreasing trends in Hg, indicating that rivers acted as a sink for the former and a source for the latter. Lake sediments showed increasing trends in Pb, Hg, Cr, and Mn, and decreasing trends in Cd, Zn, and As, indicating that lakes acted as a sink for the former and a source for the latter. Due to difference in natural backgrounds and development stage in continents, mean metal concentrations were generally higher in Europe and North America than in Africa, Asia, and South America. Principal component analysis showed that main metal source was mining and manufacturing from the 1970s to 1990s and domestic waste discharge from the 2000s to 2010s. Metal sources in sediments differed greatly by continent, with rock weathering dominant in Africa, mining and manufacturing dominant in North America, and domestic waste discharge dominant in Asia and Europe. Global trends in sediment metal loads and pollution-control measures suggest that the implementation of rigorous standards on metal emissions, limitations on metal concentrations in manufactured products, and the pretreatment of metal-contaminated waste have been effective at controlling heavy metal pollution in rivers and lakes. Thus, these efforts should be extended globally.</p>\",\"PeriodicalId\":21182,\"journal\":{\"name\":\"Reviews of environmental contamination and toxicology\",\"volume\":\"257 \",\"pages\":\"1-35\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/398_2020_59\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews of environmental contamination and toxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/398_2020_59\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of environmental contamination and toxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/398_2020_59","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Trends and Sources of Heavy Metal Pollution in Global River and Lake Sediments from 1970 to 2018.
Heavy metal pollution is a global problem although its sources and trends differ by region and time. To data, no published research has reported heavy metal pollution in global rivers and lakes. This study reviewed past sampling data across six continents from 1970 to 2018 and analyzed the trends and sources of 10 heavy metal species in sediments from 289 rivers and 133 lakes. Collectively, river sediments showed increasing trends in Cd, Cr, Ni, Mn, and Co and decreasing trends in Hg, indicating that rivers acted as a sink for the former and a source for the latter. Lake sediments showed increasing trends in Pb, Hg, Cr, and Mn, and decreasing trends in Cd, Zn, and As, indicating that lakes acted as a sink for the former and a source for the latter. Due to difference in natural backgrounds and development stage in continents, mean metal concentrations were generally higher in Europe and North America than in Africa, Asia, and South America. Principal component analysis showed that main metal source was mining and manufacturing from the 1970s to 1990s and domestic waste discharge from the 2000s to 2010s. Metal sources in sediments differed greatly by continent, with rock weathering dominant in Africa, mining and manufacturing dominant in North America, and domestic waste discharge dominant in Asia and Europe. Global trends in sediment metal loads and pollution-control measures suggest that the implementation of rigorous standards on metal emissions, limitations on metal concentrations in manufactured products, and the pretreatment of metal-contaminated waste have been effective at controlling heavy metal pollution in rivers and lakes. Thus, these efforts should be extended globally.
期刊介绍:
Reviews of Environmental Contamination and Toxicology publishes reviews pertaining to the sources, transport, fate and effects of contaminants in the environment. The journal provides a place for the publication of critical reviews of the current knowledge and understanding of environmental sciences in order to provide insight into contaminant pathways, fate and behavior in environmental compartments and the possible consequences of their presence, with multidisciplinary contributions from the fields of analytical chemistry, biochemistry, biology, ecology, molecular and cellular biology (in an environmental context), and human, wildlife and environmental toxicology.
•Standing on a 55+ year history of publishing environmental toxicology reviews
•Now publishing in journal format boasting rigorous review and expanded editorial board
•Publishing home for extensive environmental reviews dealing with sources, transport, fate and effect of contaminants
•Through Springer Compact agreements, authors from participating institutions can publish Open Choice at no cost to the authors