心理健康初级护理数字支持系统(PRESTO):设计、开发和研究协议。

0 PSYCHIATRY
Gerard Anmella , Mireia Primé-Tous , Xavier Segú , Aleix Solanes , Victoria Ruíz , Inés Martín-Villalba , Ivette Morilla , Antonieta Also-Fontanet , Elisenda Sant , Sandra Murgui , Mireia Sans-Corrales , Andrea Murru , Roland Zahn , Allan H. Young , Victor Vicens , Clara Viñas-Bardolet , Juan Francisco Martínez-Cerdá , Jordi Blanch , Joaquim Radua , Miquel-Àngel Fullana , Diego Hidalgo-Mazzei
{"title":"心理健康初级护理数字支持系统(PRESTO):设计、开发和研究协议。","authors":"Gerard Anmella ,&nbsp;Mireia Primé-Tous ,&nbsp;Xavier Segú ,&nbsp;Aleix Solanes ,&nbsp;Victoria Ruíz ,&nbsp;Inés Martín-Villalba ,&nbsp;Ivette Morilla ,&nbsp;Antonieta Also-Fontanet ,&nbsp;Elisenda Sant ,&nbsp;Sandra Murgui ,&nbsp;Mireia Sans-Corrales ,&nbsp;Andrea Murru ,&nbsp;Roland Zahn ,&nbsp;Allan H. Young ,&nbsp;Victor Vicens ,&nbsp;Clara Viñas-Bardolet ,&nbsp;Juan Francisco Martínez-Cerdá ,&nbsp;Jordi Blanch ,&nbsp;Joaquim Radua ,&nbsp;Miquel-Àngel Fullana ,&nbsp;Diego Hidalgo-Mazzei","doi":"10.1016/j.rpsm.2021.04.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p><span>About 30–50% of Primary Care (PC) users in Spain suffer mental health problems, mostly mild to moderate anxious and depressive symptoms, which account for 2% of Spain's total Gross domestic product and 50% of the costs associated to all </span>mental disorders<span>. Mobile health tools have demonstrated to cost-effectively reduce anxious and depressive symptoms while machine learning (ML) techniques have shown to accurately detect severe cases. The main aim of this project is to develop a comprehensive ML digital support platform (PRESTO) to cost-effectively screen, assess, triage, and provide personalized treatments for anxious and depressive symptoms in PC.</span></p></div><div><h3>Methods</h3><p>The project will be carried out in 3 complementary phases: First, a ML predictive severity model will be built based on all the cases referred to the PC mental health support programme during the last 5 years in Catalonia. Simultaneously, a smartphone app to monitor and deliver psychological interventions for anxiety and depressive symptoms will be developed and tested in a clinical trial<span>. Finally, the ML models and the app will be integrated in a comprehensive decision-support platform (PRESTO) which will triage and assign to each patient a specific intervention based on individual personal and clinical characteristics. The effectiveness of PRESTO to reduce waiting times in receiving mental healthcare will be tested in a stepped-wedge cluster randomized controlled trial in 5 PC centres.</span></p></div><div><h3>Discussion</h3><p>PRESTO will offer timely and personalized cost-effective mental health treatment to people with mild to moderate anxious and depressive symptoms. This will result in a reduction of the burden of mental health problems in PC and on society as a whole.</p></div><div><h3>Trial registration</h3><p>The project and their clinical trials were registered in Clinical Trials.gov: <span>NCT04559360</span><svg><path></path></svg> (September 2020).</p></div>","PeriodicalId":101179,"journal":{"name":"Spanish Journal of Psychiatry and Mental Health","volume":"17 2","pages":"Pages 114-125"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PRimary carE digital Support ToOl in mental health (PRESTO): Design, development and study protocols\",\"authors\":\"Gerard Anmella ,&nbsp;Mireia Primé-Tous ,&nbsp;Xavier Segú ,&nbsp;Aleix Solanes ,&nbsp;Victoria Ruíz ,&nbsp;Inés Martín-Villalba ,&nbsp;Ivette Morilla ,&nbsp;Antonieta Also-Fontanet ,&nbsp;Elisenda Sant ,&nbsp;Sandra Murgui ,&nbsp;Mireia Sans-Corrales ,&nbsp;Andrea Murru ,&nbsp;Roland Zahn ,&nbsp;Allan H. Young ,&nbsp;Victor Vicens ,&nbsp;Clara Viñas-Bardolet ,&nbsp;Juan Francisco Martínez-Cerdá ,&nbsp;Jordi Blanch ,&nbsp;Joaquim Radua ,&nbsp;Miquel-Àngel Fullana ,&nbsp;Diego Hidalgo-Mazzei\",\"doi\":\"10.1016/j.rpsm.2021.04.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p><span>About 30–50% of Primary Care (PC) users in Spain suffer mental health problems, mostly mild to moderate anxious and depressive symptoms, which account for 2% of Spain's total Gross domestic product and 50% of the costs associated to all </span>mental disorders<span>. Mobile health tools have demonstrated to cost-effectively reduce anxious and depressive symptoms while machine learning (ML) techniques have shown to accurately detect severe cases. The main aim of this project is to develop a comprehensive ML digital support platform (PRESTO) to cost-effectively screen, assess, triage, and provide personalized treatments for anxious and depressive symptoms in PC.</span></p></div><div><h3>Methods</h3><p>The project will be carried out in 3 complementary phases: First, a ML predictive severity model will be built based on all the cases referred to the PC mental health support programme during the last 5 years in Catalonia. Simultaneously, a smartphone app to monitor and deliver psychological interventions for anxiety and depressive symptoms will be developed and tested in a clinical trial<span>. Finally, the ML models and the app will be integrated in a comprehensive decision-support platform (PRESTO) which will triage and assign to each patient a specific intervention based on individual personal and clinical characteristics. The effectiveness of PRESTO to reduce waiting times in receiving mental healthcare will be tested in a stepped-wedge cluster randomized controlled trial in 5 PC centres.</span></p></div><div><h3>Discussion</h3><p>PRESTO will offer timely and personalized cost-effective mental health treatment to people with mild to moderate anxious and depressive symptoms. This will result in a reduction of the burden of mental health problems in PC and on society as a whole.</p></div><div><h3>Trial registration</h3><p>The project and their clinical trials were registered in Clinical Trials.gov: <span>NCT04559360</span><svg><path></path></svg> (September 2020).</p></div>\",\"PeriodicalId\":101179,\"journal\":{\"name\":\"Spanish Journal of Psychiatry and Mental Health\",\"volume\":\"17 2\",\"pages\":\"Pages 114-125\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spanish Journal of Psychiatry and Mental Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1888989121000513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spanish Journal of Psychiatry and Mental Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1888989121000513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

摘要

背景:在西班牙,约有 30-50% 的初级保健(PC)用户存在心理健康问题,主要是轻度至中度焦虑和抑郁症状,占西班牙国内生产总值的 2%,占所有精神障碍相关费用的 50%。事实证明,移动医疗工具可以经济有效地减少焦虑和抑郁症状,而机器学习(ML)技术则可以准确检测出严重病例。本项目的主要目的是开发一个全面的 ML 数字支持平台(PRESTO),以经济有效的方式筛查、评估、分流 PC 中的焦虑和抑郁症状,并提供个性化治疗:该项目将分三个互补阶段进行:首先,将根据加泰罗尼亚地区过去 5 年中转诊至 PC 心理健康支持计划的所有病例,建立一个 ML 预测严重程度模型。与此同时,还将开发一款智能手机应用程序,用于监测和提供针对焦虑和抑郁症状的心理干预措施,并在临床试验中进行测试。最后,将把 ML 模型和应用程序整合到一个综合决策支持平台(PRESTO)中,该平台将根据个人和临床特征对每位患者进行分流并分配特定的干预措施。PRESTO将在5个PC中心进行阶梯式群组随机对照试验,以检验其在缩短精神医疗服务轮候时间方面的有效性:PRESTO将为有轻度至中度焦虑和抑郁症状的人提供及时和个性化的、具有成本效益的精神健康治疗。讨论:PRESTO 将为有轻度和中度焦虑和抑郁症状的人提供及时、个性化、经济有效的心理健康治疗,从而减轻 PC 患者和整个社会的心理健康问题负担:该项目及其临床试验已在 Clinical Trials.gov 上注册:NCT04559360(2020 年 9 月)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PRimary carE digital Support ToOl in mental health (PRESTO): Design, development and study protocols

Background

About 30–50% of Primary Care (PC) users in Spain suffer mental health problems, mostly mild to moderate anxious and depressive symptoms, which account for 2% of Spain's total Gross domestic product and 50% of the costs associated to all mental disorders. Mobile health tools have demonstrated to cost-effectively reduce anxious and depressive symptoms while machine learning (ML) techniques have shown to accurately detect severe cases. The main aim of this project is to develop a comprehensive ML digital support platform (PRESTO) to cost-effectively screen, assess, triage, and provide personalized treatments for anxious and depressive symptoms in PC.

Methods

The project will be carried out in 3 complementary phases: First, a ML predictive severity model will be built based on all the cases referred to the PC mental health support programme during the last 5 years in Catalonia. Simultaneously, a smartphone app to monitor and deliver psychological interventions for anxiety and depressive symptoms will be developed and tested in a clinical trial. Finally, the ML models and the app will be integrated in a comprehensive decision-support platform (PRESTO) which will triage and assign to each patient a specific intervention based on individual personal and clinical characteristics. The effectiveness of PRESTO to reduce waiting times in receiving mental healthcare will be tested in a stepped-wedge cluster randomized controlled trial in 5 PC centres.

Discussion

PRESTO will offer timely and personalized cost-effective mental health treatment to people with mild to moderate anxious and depressive symptoms. This will result in a reduction of the burden of mental health problems in PC and on society as a whole.

Trial registration

The project and their clinical trials were registered in Clinical Trials.gov: NCT04559360 (September 2020).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信