{"title":"肥大细胞活化中mass相关G蛋白偶联受体x2的配体和信号传导。","authors":"Yan-Ni Mi, Na-Na Ping, Yong-Xiao Cao","doi":"10.1007/112_2020_53","DOIUrl":null,"url":null,"abstract":"<p><p>Mas-related G protein-coupled receptor-X2 (MRGPRX2) is known as a novel receptor to activate mast cells (MCs). MRGPRX2 plays a dual role in promoting MC-dependent host defense and immunomodulation and contributing to the pathogenesis of pseudo-allergic drug reactions, pain, itching, and inflammatory diseases. In this article, we discuss the possible signaling pathways of MCs activation mediated by MRGPRX2 and summarize and classify agonists and inhibitors of MRGPRX2 in MCs activation. MRGPRX2 is a low-affinity and low-selectivity receptor, which allows it to interact with a diverse group of ligands. Diverse MRGPRX2 ligands utilize conserved residues in its transmembrane (TM) domains and carboxyl-terminus Ser/Thr residues to undergo ligand binding and G protein coupling. The coupling likely initiates phosphorylation cascades, induces Ca<sup>2+</sup> mobilization, and causes degranulation and generation of cytokines and chemokines via MAPK and NF-κB pathways, resulting in MCs activation. Agonists of MRGPRX2 on MCs are divided into peptides (including antimicrobial peptides, neuropeptides, MC degranulating peptides, peptide hormones) and nonpeptides (including FDA-approved drugs). Inhibitors of MRGPRX2 include non-selective GPCR inhibitors, herbal extracts, small-molecule MRGPRX2 antagonists, and DNA aptamer drugs. Screening and classifying MRGPRX2 ligands and summarizing their signaling pathways would improve our understanding of MRGPRX2-mediated physiological and pathological effects on MCs.</p>","PeriodicalId":21169,"journal":{"name":"Reviews of Physiology Biochemistry and Pharmacology","volume":"179 ","pages":"139-188"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/112_2020_53","citationCount":"7","resultStr":"{\"title\":\"Ligands and Signaling of Mas-Related G Protein-Coupled Receptor-X2 in Mast Cell Activation.\",\"authors\":\"Yan-Ni Mi, Na-Na Ping, Yong-Xiao Cao\",\"doi\":\"10.1007/112_2020_53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mas-related G protein-coupled receptor-X2 (MRGPRX2) is known as a novel receptor to activate mast cells (MCs). MRGPRX2 plays a dual role in promoting MC-dependent host defense and immunomodulation and contributing to the pathogenesis of pseudo-allergic drug reactions, pain, itching, and inflammatory diseases. In this article, we discuss the possible signaling pathways of MCs activation mediated by MRGPRX2 and summarize and classify agonists and inhibitors of MRGPRX2 in MCs activation. MRGPRX2 is a low-affinity and low-selectivity receptor, which allows it to interact with a diverse group of ligands. Diverse MRGPRX2 ligands utilize conserved residues in its transmembrane (TM) domains and carboxyl-terminus Ser/Thr residues to undergo ligand binding and G protein coupling. The coupling likely initiates phosphorylation cascades, induces Ca<sup>2+</sup> mobilization, and causes degranulation and generation of cytokines and chemokines via MAPK and NF-κB pathways, resulting in MCs activation. Agonists of MRGPRX2 on MCs are divided into peptides (including antimicrobial peptides, neuropeptides, MC degranulating peptides, peptide hormones) and nonpeptides (including FDA-approved drugs). Inhibitors of MRGPRX2 include non-selective GPCR inhibitors, herbal extracts, small-molecule MRGPRX2 antagonists, and DNA aptamer drugs. Screening and classifying MRGPRX2 ligands and summarizing their signaling pathways would improve our understanding of MRGPRX2-mediated physiological and pathological effects on MCs.</p>\",\"PeriodicalId\":21169,\"journal\":{\"name\":\"Reviews of Physiology Biochemistry and Pharmacology\",\"volume\":\"179 \",\"pages\":\"139-188\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/112_2020_53\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews of Physiology Biochemistry and Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/112_2020_53\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Physiology Biochemistry and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/112_2020_53","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Ligands and Signaling of Mas-Related G Protein-Coupled Receptor-X2 in Mast Cell Activation.
Mas-related G protein-coupled receptor-X2 (MRGPRX2) is known as a novel receptor to activate mast cells (MCs). MRGPRX2 plays a dual role in promoting MC-dependent host defense and immunomodulation and contributing to the pathogenesis of pseudo-allergic drug reactions, pain, itching, and inflammatory diseases. In this article, we discuss the possible signaling pathways of MCs activation mediated by MRGPRX2 and summarize and classify agonists and inhibitors of MRGPRX2 in MCs activation. MRGPRX2 is a low-affinity and low-selectivity receptor, which allows it to interact with a diverse group of ligands. Diverse MRGPRX2 ligands utilize conserved residues in its transmembrane (TM) domains and carboxyl-terminus Ser/Thr residues to undergo ligand binding and G protein coupling. The coupling likely initiates phosphorylation cascades, induces Ca2+ mobilization, and causes degranulation and generation of cytokines and chemokines via MAPK and NF-κB pathways, resulting in MCs activation. Agonists of MRGPRX2 on MCs are divided into peptides (including antimicrobial peptides, neuropeptides, MC degranulating peptides, peptide hormones) and nonpeptides (including FDA-approved drugs). Inhibitors of MRGPRX2 include non-selective GPCR inhibitors, herbal extracts, small-molecule MRGPRX2 antagonists, and DNA aptamer drugs. Screening and classifying MRGPRX2 ligands and summarizing their signaling pathways would improve our understanding of MRGPRX2-mediated physiological and pathological effects on MCs.
期刊介绍:
The highly successful Reviews of Physiology, Biochemistry and Pharmacology continue to offer high-quality, in-depth reviews covering the full range of modern physiology, biochemistry and pharmacology. Leading researchers are specially invited to provide a complete understanding of the key topics in these archetypal multidisciplinary fields. In a form immediately useful to scientists, this periodical aims to filter, highlight and review the latest developments in these rapidly advancing fields.