{"title":"不同环境条件下人体呼吸系统气流的数值模拟。","authors":"Alibek Issakhov, Yeldos Zhandaulet, Aizhan Abylkassymova, Assylbek Issakhov","doi":"10.1186/s12976-020-00133-8","DOIUrl":null,"url":null,"abstract":"<p><p>The functions of the nasal cavity are very important for maintaining the internal environment of the lungs since the inner walls of the nasal cavity control the temperature and saturation of the inhaled air with water vapor until the nasopharynx is reached. In this paper, three-dimensional computational studies of airflow transport in the models of the nasal cavity were carried out for the usual inspiratory velocity in various environmental conditions. Three-dimensional numerical results are compared with experimental data and calculations of other authors. Numerical results show that during normal breathing, the human nose copes with heat and relative moisture metabolism in order to balance the intra-alveolar conditions. It is also shown in this paper that a normal nose can maintain balance even in extreme conditions, for example, in cold and hot weather. The nasal cavity accelerates heat transfer by narrowing the air passages and swirls from the nasal concha walls of the inner cavity.</p>","PeriodicalId":51195,"journal":{"name":"Theoretical Biology and Medical Modelling","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12976-020-00133-8","citationCount":"9","resultStr":"{\"title\":\"A numerical simulation of air flow in the human respiratory system for various environmental conditions.\",\"authors\":\"Alibek Issakhov, Yeldos Zhandaulet, Aizhan Abylkassymova, Assylbek Issakhov\",\"doi\":\"10.1186/s12976-020-00133-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The functions of the nasal cavity are very important for maintaining the internal environment of the lungs since the inner walls of the nasal cavity control the temperature and saturation of the inhaled air with water vapor until the nasopharynx is reached. In this paper, three-dimensional computational studies of airflow transport in the models of the nasal cavity were carried out for the usual inspiratory velocity in various environmental conditions. Three-dimensional numerical results are compared with experimental data and calculations of other authors. Numerical results show that during normal breathing, the human nose copes with heat and relative moisture metabolism in order to balance the intra-alveolar conditions. It is also shown in this paper that a normal nose can maintain balance even in extreme conditions, for example, in cold and hot weather. The nasal cavity accelerates heat transfer by narrowing the air passages and swirls from the nasal concha walls of the inner cavity.</p>\",\"PeriodicalId\":51195,\"journal\":{\"name\":\"Theoretical Biology and Medical Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s12976-020-00133-8\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Biology and Medical Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12976-020-00133-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Biology and Medical Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12976-020-00133-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
A numerical simulation of air flow in the human respiratory system for various environmental conditions.
The functions of the nasal cavity are very important for maintaining the internal environment of the lungs since the inner walls of the nasal cavity control the temperature and saturation of the inhaled air with water vapor until the nasopharynx is reached. In this paper, three-dimensional computational studies of airflow transport in the models of the nasal cavity were carried out for the usual inspiratory velocity in various environmental conditions. Three-dimensional numerical results are compared with experimental data and calculations of other authors. Numerical results show that during normal breathing, the human nose copes with heat and relative moisture metabolism in order to balance the intra-alveolar conditions. It is also shown in this paper that a normal nose can maintain balance even in extreme conditions, for example, in cold and hot weather. The nasal cavity accelerates heat transfer by narrowing the air passages and swirls from the nasal concha walls of the inner cavity.
期刊介绍:
Theoretical Biology and Medical Modelling is an open access peer-reviewed journal adopting a broad definition of "biology" and focusing on theoretical ideas and models associated with developments in biology and medicine. Mathematicians, biologists and clinicians of various specialisms, philosophers and historians of science are all contributing to the emergence of novel concepts in an age of systems biology, bioinformatics and computer modelling. This is the field in which Theoretical Biology and Medical Modelling operates. We welcome submissions that are technically sound and offering either improved understanding in biology and medicine or progress in theory or method.