Sorayya Kheirouri, Mohammad Alizadeh, Razieh Musapour Sultan Abad, Sona Barkabi-Zanjani, Mehran Mesgari-Abbasi
{"title":"二氧化硫、臭氧和环境空气污染对大鼠骨代谢相关生化参数的影响。","authors":"Sorayya Kheirouri, Mohammad Alizadeh, Razieh Musapour Sultan Abad, Sona Barkabi-Zanjani, Mehran Mesgari-Abbasi","doi":"10.5620/eaht.2020023","DOIUrl":null,"url":null,"abstract":"<p><p>Ambient air pollution (AAP), as an important environmental health problem, affects everyone. A large body of literature links AAP, such as sulfur dioxide (SO2) and ozone (O3), with a wide range of non-communicable diseases. The aim of the present study was to investigate the effects of the pollutants on the bone metabolism biochemical parameters in a rat model. Thirty-two male Wistar rats were divided to four groups: control, SO2 (10 ppm), O3 (0.6 ppm), and AAP groups. After 5 weeks of exposure (3 hours/day, 6 days/week), blood samples were taken, and biochemical parameters were assayed. Vitamin D level of the AAP group was higher than the control and SO2 groups (p=0.004 and 0.003). Parathyroid hormone (PTH) level of the O3 group was significantly higher than the AAP group (p=0.006). Alkaline phosphatase (ALP), phosphorus, magnesium levels of the SO2 group; Vit D, ALP, osteocalcin (OC), and PTH of O3 group; and OC and osteoprotegerin (OPG) of AAP group were higher than those of control group but differences were not significant. Calcium level of the SO2 group; OPG and calcium of O3 group; and PTH of AAP group were less than those of control group but differences were not significant (p>0.05). The results showed significant effect of AAP with natural daylight on vitamin D and also O3 on PTH of the rats. In the concentrations and conditions of the study, we didn't find any significant unwanted effects of AAP, SO2, and O3 on the bone biochemical parameters. More investigations with more concentrations and exposure time are recommended.</p>","PeriodicalId":11867,"journal":{"name":"Environmental analysis, health and toxicology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0f/f4/eaht-35-4-e2020023.PMC7829409.pdf","citationCount":"6","resultStr":"{\"title\":\"Effects of sulfur dioxide, ozone, and ambient air pollution on bone metabolism related biochemical parameters in a rat model.\",\"authors\":\"Sorayya Kheirouri, Mohammad Alizadeh, Razieh Musapour Sultan Abad, Sona Barkabi-Zanjani, Mehran Mesgari-Abbasi\",\"doi\":\"10.5620/eaht.2020023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ambient air pollution (AAP), as an important environmental health problem, affects everyone. A large body of literature links AAP, such as sulfur dioxide (SO2) and ozone (O3), with a wide range of non-communicable diseases. The aim of the present study was to investigate the effects of the pollutants on the bone metabolism biochemical parameters in a rat model. Thirty-two male Wistar rats were divided to four groups: control, SO2 (10 ppm), O3 (0.6 ppm), and AAP groups. After 5 weeks of exposure (3 hours/day, 6 days/week), blood samples were taken, and biochemical parameters were assayed. Vitamin D level of the AAP group was higher than the control and SO2 groups (p=0.004 and 0.003). Parathyroid hormone (PTH) level of the O3 group was significantly higher than the AAP group (p=0.006). Alkaline phosphatase (ALP), phosphorus, magnesium levels of the SO2 group; Vit D, ALP, osteocalcin (OC), and PTH of O3 group; and OC and osteoprotegerin (OPG) of AAP group were higher than those of control group but differences were not significant. Calcium level of the SO2 group; OPG and calcium of O3 group; and PTH of AAP group were less than those of control group but differences were not significant (p>0.05). The results showed significant effect of AAP with natural daylight on vitamin D and also O3 on PTH of the rats. In the concentrations and conditions of the study, we didn't find any significant unwanted effects of AAP, SO2, and O3 on the bone biochemical parameters. More investigations with more concentrations and exposure time are recommended.</p>\",\"PeriodicalId\":11867,\"journal\":{\"name\":\"Environmental analysis, health and toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0f/f4/eaht-35-4-e2020023.PMC7829409.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental analysis, health and toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5620/eaht.2020023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/12/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental analysis, health and toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5620/eaht.2020023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/12/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of sulfur dioxide, ozone, and ambient air pollution on bone metabolism related biochemical parameters in a rat model.
Ambient air pollution (AAP), as an important environmental health problem, affects everyone. A large body of literature links AAP, such as sulfur dioxide (SO2) and ozone (O3), with a wide range of non-communicable diseases. The aim of the present study was to investigate the effects of the pollutants on the bone metabolism biochemical parameters in a rat model. Thirty-two male Wistar rats were divided to four groups: control, SO2 (10 ppm), O3 (0.6 ppm), and AAP groups. After 5 weeks of exposure (3 hours/day, 6 days/week), blood samples were taken, and biochemical parameters were assayed. Vitamin D level of the AAP group was higher than the control and SO2 groups (p=0.004 and 0.003). Parathyroid hormone (PTH) level of the O3 group was significantly higher than the AAP group (p=0.006). Alkaline phosphatase (ALP), phosphorus, magnesium levels of the SO2 group; Vit D, ALP, osteocalcin (OC), and PTH of O3 group; and OC and osteoprotegerin (OPG) of AAP group were higher than those of control group but differences were not significant. Calcium level of the SO2 group; OPG and calcium of O3 group; and PTH of AAP group were less than those of control group but differences were not significant (p>0.05). The results showed significant effect of AAP with natural daylight on vitamin D and also O3 on PTH of the rats. In the concentrations and conditions of the study, we didn't find any significant unwanted effects of AAP, SO2, and O3 on the bone biochemical parameters. More investigations with more concentrations and exposure time are recommended.