Maxim Le Compte , Niels Komen , Ines Joye , Marc Peeters , Hans Prenen , Evelien Smits , Christophe Deben , Michiel de Maat
{"title":"患者来源的类器官作为预测胃肠道恶性肿瘤放化疗反应的个体患者模型","authors":"Maxim Le Compte , Niels Komen , Ines Joye , Marc Peeters , Hans Prenen , Evelien Smits , Christophe Deben , Michiel de Maat","doi":"10.1016/j.critrevonc.2020.103190","DOIUrl":null,"url":null,"abstract":"<div><p>Chemoradiotherapy (CRT) is an important treatment modality for specific gastrointestinal (GI) cancers, as it has been shown to improve clinical outcomes. Recent developments in the neoadjuvant setting such as wait-and-see strategies for rectal as well as for esophageal cancers have even proven that CRT might be an effective organ-sparing treatment. However, due to molecular heterogeneity, only a subset of patients will show a complete response to CRT, which addresses the need for an individualized treatment approach. In recent years, the demand for more physiologically relevant predictive <em>in vitro</em> models has fostered the development of patient-derived tumor organoids.</p><p>In this review, we describe the current treatment options for patients with GI cancers who are treated with (neo)adjuvant CRT. Furthermore, we provide an in-depth discussion of the organoid technology in the context of predicting CRT response for GI cancers as well as possible challenges for clinical implementation.</p></div>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.critrevonc.2020.103190","citationCount":"5","resultStr":"{\"title\":\"Patient-derived organoids as individual patient models for chemoradiation response prediction in gastrointestinal malignancies\",\"authors\":\"Maxim Le Compte , Niels Komen , Ines Joye , Marc Peeters , Hans Prenen , Evelien Smits , Christophe Deben , Michiel de Maat\",\"doi\":\"10.1016/j.critrevonc.2020.103190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chemoradiotherapy (CRT) is an important treatment modality for specific gastrointestinal (GI) cancers, as it has been shown to improve clinical outcomes. Recent developments in the neoadjuvant setting such as wait-and-see strategies for rectal as well as for esophageal cancers have even proven that CRT might be an effective organ-sparing treatment. However, due to molecular heterogeneity, only a subset of patients will show a complete response to CRT, which addresses the need for an individualized treatment approach. In recent years, the demand for more physiologically relevant predictive <em>in vitro</em> models has fostered the development of patient-derived tumor organoids.</p><p>In this review, we describe the current treatment options for patients with GI cancers who are treated with (neo)adjuvant CRT. Furthermore, we provide an in-depth discussion of the organoid technology in the context of predicting CRT response for GI cancers as well as possible challenges for clinical implementation.</p></div>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.critrevonc.2020.103190\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1040842820303267\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1040842820303267","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Patient-derived organoids as individual patient models for chemoradiation response prediction in gastrointestinal malignancies
Chemoradiotherapy (CRT) is an important treatment modality for specific gastrointestinal (GI) cancers, as it has been shown to improve clinical outcomes. Recent developments in the neoadjuvant setting such as wait-and-see strategies for rectal as well as for esophageal cancers have even proven that CRT might be an effective organ-sparing treatment. However, due to molecular heterogeneity, only a subset of patients will show a complete response to CRT, which addresses the need for an individualized treatment approach. In recent years, the demand for more physiologically relevant predictive in vitro models has fostered the development of patient-derived tumor organoids.
In this review, we describe the current treatment options for patients with GI cancers who are treated with (neo)adjuvant CRT. Furthermore, we provide an in-depth discussion of the organoid technology in the context of predicting CRT response for GI cancers as well as possible challenges for clinical implementation.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.