{"title":"神经元生物物理网络中多种节律的相互作用。","authors":"Alexandros Gelastopoulos, Nancy J Kopell","doi":"10.1186/s13408-020-00096-7","DOIUrl":null,"url":null,"abstract":"<p><p>Neural oscillations, including rhythms in the beta1 band (12-20 Hz), are important in various cognitive functions. Often neural networks receive rhythmic input at frequencies different from their natural frequency, but very little is known about how such input affects the network's behavior. We use a simplified, yet biophysical, model of a beta1 rhythm that occurs in the parietal cortex, in order to study its response to oscillatory inputs. We demonstrate that a cell has the ability to respond at the same time to two periodic stimuli of unrelated frequencies, firing in phase with one, but with a mean firing rate equal to that of the other. We show that this is a very general phenomenon, independent of the model used. We next show numerically that the behavior of a different cell, which is modeled as a high-dimensional dynamical system, can be described in a surprisingly simple way, owing to a reset that occurs in the state space when the cell fires. The interaction of the two cells leads to novel combinations of properties for neural dynamics, such as mode-locking to an input without phase-locking to it.</p>","PeriodicalId":54271,"journal":{"name":"Journal of Mathematical Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2020-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13408-020-00096-7","citationCount":"1","resultStr":"{\"title\":\"Interactions of multiple rhythms in a biophysical network of neurons.\",\"authors\":\"Alexandros Gelastopoulos, Nancy J Kopell\",\"doi\":\"10.1186/s13408-020-00096-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neural oscillations, including rhythms in the beta1 band (12-20 Hz), are important in various cognitive functions. Often neural networks receive rhythmic input at frequencies different from their natural frequency, but very little is known about how such input affects the network's behavior. We use a simplified, yet biophysical, model of a beta1 rhythm that occurs in the parietal cortex, in order to study its response to oscillatory inputs. We demonstrate that a cell has the ability to respond at the same time to two periodic stimuli of unrelated frequencies, firing in phase with one, but with a mean firing rate equal to that of the other. We show that this is a very general phenomenon, independent of the model used. We next show numerically that the behavior of a different cell, which is modeled as a high-dimensional dynamical system, can be described in a surprisingly simple way, owing to a reset that occurs in the state space when the cell fires. The interaction of the two cells leads to novel combinations of properties for neural dynamics, such as mode-locking to an input without phase-locking to it.</p>\",\"PeriodicalId\":54271,\"journal\":{\"name\":\"Journal of Mathematical Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2020-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13408-020-00096-7\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13408-020-00096-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13408-020-00096-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Neuroscience","Score":null,"Total":0}
Interactions of multiple rhythms in a biophysical network of neurons.
Neural oscillations, including rhythms in the beta1 band (12-20 Hz), are important in various cognitive functions. Often neural networks receive rhythmic input at frequencies different from their natural frequency, but very little is known about how such input affects the network's behavior. We use a simplified, yet biophysical, model of a beta1 rhythm that occurs in the parietal cortex, in order to study its response to oscillatory inputs. We demonstrate that a cell has the ability to respond at the same time to two periodic stimuli of unrelated frequencies, firing in phase with one, but with a mean firing rate equal to that of the other. We show that this is a very general phenomenon, independent of the model used. We next show numerically that the behavior of a different cell, which is modeled as a high-dimensional dynamical system, can be described in a surprisingly simple way, owing to a reset that occurs in the state space when the cell fires. The interaction of the two cells leads to novel combinations of properties for neural dynamics, such as mode-locking to an input without phase-locking to it.
期刊介绍:
The Journal of Mathematical Neuroscience (JMN) publishes research articles on the mathematical modeling and analysis of all areas of neuroscience, i.e., the study of the nervous system and its dysfunctions. The focus is on using mathematics as the primary tool for elucidating the fundamental mechanisms responsible for experimentally observed behaviours in neuroscience at all relevant scales, from the molecular world to that of cognition. The aim is to publish work that uses advanced mathematical techniques to illuminate these questions.
It publishes full length original papers, rapid communications and review articles. Papers that combine theoretical results supported by convincing numerical experiments are especially encouraged.
Papers that introduce and help develop those new pieces of mathematical theory which are likely to be relevant to future studies of the nervous system in general and the human brain in particular are also welcome.