Kristijan Skok, Maja Duh, Andraž Stožer, Andrej Markota, Marko Gosak
{"title":"体温调节:从生理学到计算模型和重症监护室的旅程。","authors":"Kristijan Skok, Maja Duh, Andraž Stožer, Andrej Markota, Marko Gosak","doi":"10.1002/wsbm.1513","DOIUrl":null,"url":null,"abstract":"<p><p>Thermoregulation plays a vital role in homeostasis. Many species of animals as well as humans have evolved various physiological mechanisms for body temperature control, which are characteristically flexible and enable a fine-tuned spatial and temporal regulation of body temperature in different environmental conditions and circumstances. Human beings normally maintain a core body temperature at around 37°C, and maintenance of this relatively high temperature is critical for survival. Therefore, principles of thermoregulatory control have also important clinical implications. Infections can cause the body temperature to rise internally and several diseases can cause a dysfunction of thermoregulatory mechanisms. Moreover, the utilization of thermotherapies in treating various diseases has been known for thousands of years with a recent resurgence of interest. An increasing amount of research suggests that targeted temperature management is of paramount importance to patient outcomes in certain clinical scenarios. We provide a concise summary of the basic concepts of thermoregulation. Emphasis is given to the principles of thermoregulation in humans in basic pathological states and to targeted temperature management strategies in the clinical environment, with special attention on therapeutic hypothermia in postcardiac arrest patients. Finally, the discussion is focused on the potential offered by computational thermophysiological models for predicting thermal responses of patients in various clinical circumstances, for proposing new perspectives in the design of novel thermal therapies, and to optimize targeted temperature management strategies. This article is categorized under: Cardiovascular Diseases > Cardiovascular Diseases>Computational Models Cardiovascular Diseases > Cardiovascular Diseases>Environmental Factors Cardiovascular Diseases > Cardiovascular Diseases>Biomedical Engineering.</p>","PeriodicalId":49254,"journal":{"name":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","volume":" ","pages":"e1513"},"PeriodicalIF":7.9000,"publicationDate":"2020-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermoregulation: A journey from physiology to computational models and the intensive care unit.\",\"authors\":\"Kristijan Skok, Maja Duh, Andraž Stožer, Andrej Markota, Marko Gosak\",\"doi\":\"10.1002/wsbm.1513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thermoregulation plays a vital role in homeostasis. Many species of animals as well as humans have evolved various physiological mechanisms for body temperature control, which are characteristically flexible and enable a fine-tuned spatial and temporal regulation of body temperature in different environmental conditions and circumstances. Human beings normally maintain a core body temperature at around 37°C, and maintenance of this relatively high temperature is critical for survival. Therefore, principles of thermoregulatory control have also important clinical implications. Infections can cause the body temperature to rise internally and several diseases can cause a dysfunction of thermoregulatory mechanisms. Moreover, the utilization of thermotherapies in treating various diseases has been known for thousands of years with a recent resurgence of interest. An increasing amount of research suggests that targeted temperature management is of paramount importance to patient outcomes in certain clinical scenarios. We provide a concise summary of the basic concepts of thermoregulation. Emphasis is given to the principles of thermoregulation in humans in basic pathological states and to targeted temperature management strategies in the clinical environment, with special attention on therapeutic hypothermia in postcardiac arrest patients. Finally, the discussion is focused on the potential offered by computational thermophysiological models for predicting thermal responses of patients in various clinical circumstances, for proposing new perspectives in the design of novel thermal therapies, and to optimize targeted temperature management strategies. This article is categorized under: Cardiovascular Diseases > Cardiovascular Diseases>Computational Models Cardiovascular Diseases > Cardiovascular Diseases>Environmental Factors Cardiovascular Diseases > Cardiovascular Diseases>Biomedical Engineering.</p>\",\"PeriodicalId\":49254,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Systems Biology and Medicine\",\"volume\":\" \",\"pages\":\"e1513\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2020-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Systems Biology and Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/wsbm.1513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wsbm.1513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Thermoregulation: A journey from physiology to computational models and the intensive care unit.
Thermoregulation plays a vital role in homeostasis. Many species of animals as well as humans have evolved various physiological mechanisms for body temperature control, which are characteristically flexible and enable a fine-tuned spatial and temporal regulation of body temperature in different environmental conditions and circumstances. Human beings normally maintain a core body temperature at around 37°C, and maintenance of this relatively high temperature is critical for survival. Therefore, principles of thermoregulatory control have also important clinical implications. Infections can cause the body temperature to rise internally and several diseases can cause a dysfunction of thermoregulatory mechanisms. Moreover, the utilization of thermotherapies in treating various diseases has been known for thousands of years with a recent resurgence of interest. An increasing amount of research suggests that targeted temperature management is of paramount importance to patient outcomes in certain clinical scenarios. We provide a concise summary of the basic concepts of thermoregulation. Emphasis is given to the principles of thermoregulation in humans in basic pathological states and to targeted temperature management strategies in the clinical environment, with special attention on therapeutic hypothermia in postcardiac arrest patients. Finally, the discussion is focused on the potential offered by computational thermophysiological models for predicting thermal responses of patients in various clinical circumstances, for proposing new perspectives in the design of novel thermal therapies, and to optimize targeted temperature management strategies. This article is categorized under: Cardiovascular Diseases > Cardiovascular Diseases>Computational Models Cardiovascular Diseases > Cardiovascular Diseases>Environmental Factors Cardiovascular Diseases > Cardiovascular Diseases>Biomedical Engineering.
期刊介绍:
Journal Name:Wiley Interdisciplinary Reviews-Systems Biology and Medicine
Focus:
Strong interdisciplinary focus
Serves as an encyclopedic reference for systems biology research
Conceptual Framework:
Systems biology asserts the study of organisms as hierarchical systems or networks
Individual biological components interact in complex ways within these systems
Article Coverage:
Discusses biology, methods, and models
Spans systems from a few molecules to whole species
Topical Coverage:
Developmental Biology
Physiology
Biological Mechanisms
Models of Systems, Properties, and Processes
Laboratory Methods and Technologies
Translational, Genomic, and Systems Medicine