Gopal Kumar, Prodyot K Chatterjee, Swati Madankumar, Syed F Mehdi, Xiangying Xue, Christine N Metz
{"title":"高钙镁比的镁缺乏促进CT26结肠癌细胞系的转移表型。","authors":"Gopal Kumar, Prodyot K Chatterjee, Swati Madankumar, Syed F Mehdi, Xiangying Xue, Christine N Metz","doi":"10.1684/mrh.2020.0470","DOIUrl":null,"url":null,"abstract":"<p><p>Magnesium (Mg) plays important roles in maintaining genomic stability and cellular redox. Mg also serves as nature's physiological calcium (Ca) channel antagonist, controlling intracellular Ca entry. Because Ca is the most important second messenger, its intracellular concentration is tightly regulated. Excess intracellular Ca can activate aberrant signaling pathways leading to the acquisition of pathological characteristics and cell injury. Several epidemiological studies have linked Mg deficiency (MgD) and increased Ca:Mg ratios with higher incidences of colon cancer and increased mortality. While it is estimated that less than 50% of the US population consumes the recommended daily allowance for Mg, Ca supplementation is widespread. Therefore, we studied the effect of MgD, with variable Ca:Mg ratios on cellular oxidative stress, cell migration, calpain activity, and associated signaling pathways using the CT26 colon cancer cell line. MgD (with Ca:Mg ratios >1) elevated intracellular Ca levels, calpain activity and TRPM7 expression, as well as oxidative stress and cell migration, consistent with observed degradation of full-length E-cadherin, β-catenin, and N-terminal FAK. MgD was accompanied by enhanced degradation of IκBα and the transactivation domain containing the C-terminus of NF-κB p65 (RelA). MgD-exposed CT26 cells exhibited increased p53 degradation and aneuploidy, markers of genomic instability. By contrast, these pathological changes were not observed when CT26 were cultured under MgD conditions where the Ca:Mg ratio was kept at 1. Together, these data support that exposure of colon cancer cells to MgD with physiological Ca concentrations (or increasing Ca:Mg ratios) leads to the acquisition of a more aggressive, metastatic phenotype.</p>","PeriodicalId":18159,"journal":{"name":"Magnesium research","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Magnesium deficiency with high calcium-to-magnesium ratio promotes a metastatic phenotype in the CT26 colon cancer cell line.\",\"authors\":\"Gopal Kumar, Prodyot K Chatterjee, Swati Madankumar, Syed F Mehdi, Xiangying Xue, Christine N Metz\",\"doi\":\"10.1684/mrh.2020.0470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnesium (Mg) plays important roles in maintaining genomic stability and cellular redox. Mg also serves as nature's physiological calcium (Ca) channel antagonist, controlling intracellular Ca entry. Because Ca is the most important second messenger, its intracellular concentration is tightly regulated. Excess intracellular Ca can activate aberrant signaling pathways leading to the acquisition of pathological characteristics and cell injury. Several epidemiological studies have linked Mg deficiency (MgD) and increased Ca:Mg ratios with higher incidences of colon cancer and increased mortality. While it is estimated that less than 50% of the US population consumes the recommended daily allowance for Mg, Ca supplementation is widespread. Therefore, we studied the effect of MgD, with variable Ca:Mg ratios on cellular oxidative stress, cell migration, calpain activity, and associated signaling pathways using the CT26 colon cancer cell line. MgD (with Ca:Mg ratios >1) elevated intracellular Ca levels, calpain activity and TRPM7 expression, as well as oxidative stress and cell migration, consistent with observed degradation of full-length E-cadherin, β-catenin, and N-terminal FAK. MgD was accompanied by enhanced degradation of IκBα and the transactivation domain containing the C-terminus of NF-κB p65 (RelA). MgD-exposed CT26 cells exhibited increased p53 degradation and aneuploidy, markers of genomic instability. By contrast, these pathological changes were not observed when CT26 were cultured under MgD conditions where the Ca:Mg ratio was kept at 1. Together, these data support that exposure of colon cancer cells to MgD with physiological Ca concentrations (or increasing Ca:Mg ratios) leads to the acquisition of a more aggressive, metastatic phenotype.</p>\",\"PeriodicalId\":18159,\"journal\":{\"name\":\"Magnesium research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnesium research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1684/mrh.2020.0470\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnesium research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1684/mrh.2020.0470","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Magnesium deficiency with high calcium-to-magnesium ratio promotes a metastatic phenotype in the CT26 colon cancer cell line.
Magnesium (Mg) plays important roles in maintaining genomic stability and cellular redox. Mg also serves as nature's physiological calcium (Ca) channel antagonist, controlling intracellular Ca entry. Because Ca is the most important second messenger, its intracellular concentration is tightly regulated. Excess intracellular Ca can activate aberrant signaling pathways leading to the acquisition of pathological characteristics and cell injury. Several epidemiological studies have linked Mg deficiency (MgD) and increased Ca:Mg ratios with higher incidences of colon cancer and increased mortality. While it is estimated that less than 50% of the US population consumes the recommended daily allowance for Mg, Ca supplementation is widespread. Therefore, we studied the effect of MgD, with variable Ca:Mg ratios on cellular oxidative stress, cell migration, calpain activity, and associated signaling pathways using the CT26 colon cancer cell line. MgD (with Ca:Mg ratios >1) elevated intracellular Ca levels, calpain activity and TRPM7 expression, as well as oxidative stress and cell migration, consistent with observed degradation of full-length E-cadherin, β-catenin, and N-terminal FAK. MgD was accompanied by enhanced degradation of IκBα and the transactivation domain containing the C-terminus of NF-κB p65 (RelA). MgD-exposed CT26 cells exhibited increased p53 degradation and aneuploidy, markers of genomic instability. By contrast, these pathological changes were not observed when CT26 were cultured under MgD conditions where the Ca:Mg ratio was kept at 1. Together, these data support that exposure of colon cancer cells to MgD with physiological Ca concentrations (or increasing Ca:Mg ratios) leads to the acquisition of a more aggressive, metastatic phenotype.
期刊介绍:
Magnesium Research, the official journal of the international Society for the Development of Research on Magnesium (SDRM), has been the benchmark journal on the use of magnesium in biomedicine for more than 30 years.
This quarterly publication provides regular updates on multinational and multidisciplinary research into magnesium, bringing together original experimental and clinical articles, correspondence, Letters to the Editor, comments on latest news, general features, summaries of relevant articles from other journals, and reports and statements from national and international conferences and symposiums.
Indexed in the leading medical databases, Magnesium Research is an essential journal for specialists and general practitioners, for basic and clinical researchers, for practising doctors and academics.