Kenji Doma, Baily Devantier-Thomas, Daniel Gahreman, Jonathan Connor
{"title":"选择性补充根茎植物可降低运动引起的肌肉损伤指标:一项系统回顾和荟萃分析。","authors":"Kenji Doma, Baily Devantier-Thomas, Daniel Gahreman, Jonathan Connor","doi":"10.1024/0300-9831/a000689","DOIUrl":null,"url":null,"abstract":"<p><p><b></b> This systematic review and meta-analysis examined the effects of selected root plants (curcumin, ginseng, ginger and garlic) on markers of muscle damage and muscular performance measures following muscle-damaging protocols. We included 25 studies (parallel and crossover design) with 353 participants and used the PEDro scale to appraise each study. Forest plots were generated to report on standardised mean differences (SMD) and p-values at 24 and 48 hours following the muscle-damaging protocols. The meta-analysis showed that the supplemental (SUPP) condition showed significantly lower levels of indirect muscle damage markers (creatine kinase, lactate dehydrogenase and myoglobin) and muscle soreness at 24 hours and 48 hours (p < 0.01) than the placebo (PLA) condition. The inflammatory markers were significantly lower for the SUPP condition than the PLA condition at 24 hours (p = 0.02), although no differences were identified at 48 hours (p = 0.40). There were no significant differences in muscular performance measures between the SUPP and PLA conditions at 24 hours and 48 hours (p > 0.05) post-exercise. According to our qualitative data, a number of studies reported a reduction in oxidative stress (e.g., malondialdehyde, superoxide dismutase) with a concomitant upregulation of anti-oxidant status, although other studies showed no effects. Accordingly, selected root plants minimised the level of several biomarkers of muscle damage, inflammation and muscle soreness during periods of exercise-induced muscle damage. However, the benefits of these supplements in ameliorating oxidative stress, increasing anti-oxidant status and accelerating recovery of muscular performance appears equivocal, warranting further research in these outcome measures.</p>","PeriodicalId":13884,"journal":{"name":"International Journal for Vitamin and Nutrition Research","volume":"92 5-6","pages":"448-468"},"PeriodicalIF":2.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Selected root plant supplementation reduces indices of exercise-induced muscle damage: A systematic review and meta-analysis.\",\"authors\":\"Kenji Doma, Baily Devantier-Thomas, Daniel Gahreman, Jonathan Connor\",\"doi\":\"10.1024/0300-9831/a000689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b></b> This systematic review and meta-analysis examined the effects of selected root plants (curcumin, ginseng, ginger and garlic) on markers of muscle damage and muscular performance measures following muscle-damaging protocols. We included 25 studies (parallel and crossover design) with 353 participants and used the PEDro scale to appraise each study. Forest plots were generated to report on standardised mean differences (SMD) and p-values at 24 and 48 hours following the muscle-damaging protocols. The meta-analysis showed that the supplemental (SUPP) condition showed significantly lower levels of indirect muscle damage markers (creatine kinase, lactate dehydrogenase and myoglobin) and muscle soreness at 24 hours and 48 hours (p < 0.01) than the placebo (PLA) condition. The inflammatory markers were significantly lower for the SUPP condition than the PLA condition at 24 hours (p = 0.02), although no differences were identified at 48 hours (p = 0.40). There were no significant differences in muscular performance measures between the SUPP and PLA conditions at 24 hours and 48 hours (p > 0.05) post-exercise. According to our qualitative data, a number of studies reported a reduction in oxidative stress (e.g., malondialdehyde, superoxide dismutase) with a concomitant upregulation of anti-oxidant status, although other studies showed no effects. Accordingly, selected root plants minimised the level of several biomarkers of muscle damage, inflammation and muscle soreness during periods of exercise-induced muscle damage. However, the benefits of these supplements in ameliorating oxidative stress, increasing anti-oxidant status and accelerating recovery of muscular performance appears equivocal, warranting further research in these outcome measures.</p>\",\"PeriodicalId\":13884,\"journal\":{\"name\":\"International Journal for Vitamin and Nutrition Research\",\"volume\":\"92 5-6\",\"pages\":\"448-468\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Vitamin and Nutrition Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1024/0300-9831/a000689\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/11/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Vitamin and Nutrition Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1024/0300-9831/a000689","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
Selected root plant supplementation reduces indices of exercise-induced muscle damage: A systematic review and meta-analysis.
This systematic review and meta-analysis examined the effects of selected root plants (curcumin, ginseng, ginger and garlic) on markers of muscle damage and muscular performance measures following muscle-damaging protocols. We included 25 studies (parallel and crossover design) with 353 participants and used the PEDro scale to appraise each study. Forest plots were generated to report on standardised mean differences (SMD) and p-values at 24 and 48 hours following the muscle-damaging protocols. The meta-analysis showed that the supplemental (SUPP) condition showed significantly lower levels of indirect muscle damage markers (creatine kinase, lactate dehydrogenase and myoglobin) and muscle soreness at 24 hours and 48 hours (p < 0.01) than the placebo (PLA) condition. The inflammatory markers were significantly lower for the SUPP condition than the PLA condition at 24 hours (p = 0.02), although no differences were identified at 48 hours (p = 0.40). There were no significant differences in muscular performance measures between the SUPP and PLA conditions at 24 hours and 48 hours (p > 0.05) post-exercise. According to our qualitative data, a number of studies reported a reduction in oxidative stress (e.g., malondialdehyde, superoxide dismutase) with a concomitant upregulation of anti-oxidant status, although other studies showed no effects. Accordingly, selected root plants minimised the level of several biomarkers of muscle damage, inflammation and muscle soreness during periods of exercise-induced muscle damage. However, the benefits of these supplements in ameliorating oxidative stress, increasing anti-oxidant status and accelerating recovery of muscular performance appears equivocal, warranting further research in these outcome measures.
期刊介绍:
Since 1930 this journal has provided an important international forum for scientific advances in the study of nutrition and vitamins. Widely read by academicians as well as scientists working in major governmental and corporate laboratories throughout the world, this publication presents work dealing with basic as well as applied topics in the field of micronutrients, macronutrients, and non-nutrients such as secondary plant compounds.
The editorial and advisory boards include many of the leading persons currently working in this area.
The journal is of particular interest to:
- Nutritionists
- Vitaminologists
- Biochemists
- Physicians
- Engineers of human and animal nutrition
- Food scientists