铁酸锰纳米颗粒的弛豫率

IF 7.3 2区 化学 Q2 CHEMISTRY, PHYSICAL
Joop A. Peters
{"title":"铁酸锰纳米颗粒的弛豫率","authors":"Joop A. Peters","doi":"10.1016/j.pnmrs.2020.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>Manganese ferrite nanoparticles are superparamagnetic and have very high saturation magnetization, which makes them candidates for application as MRI contrast agents. Because these nanoparticles are very effective enhancers of transverse relaxation, they are particularly suitable as negative (<em>T</em><sub>2</sub>-weighted) contrast agents. The magnitude of the relaxivity of nanoparticulate Mn ferrites seems to be determined mainly by the method of preparation, their dimensions, and their saturation magnetization.</p></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"120 ","pages":"Pages 72-94"},"PeriodicalIF":7.3000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pnmrs.2020.07.002","citationCount":"15","resultStr":"{\"title\":\"Relaxivity of manganese ferrite nanoparticles\",\"authors\":\"Joop A. Peters\",\"doi\":\"10.1016/j.pnmrs.2020.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Manganese ferrite nanoparticles are superparamagnetic and have very high saturation magnetization, which makes them candidates for application as MRI contrast agents. Because these nanoparticles are very effective enhancers of transverse relaxation, they are particularly suitable as negative (<em>T</em><sub>2</sub>-weighted) contrast agents. The magnitude of the relaxivity of nanoparticulate Mn ferrites seems to be determined mainly by the method of preparation, their dimensions, and their saturation magnetization.</p></div>\",\"PeriodicalId\":20740,\"journal\":{\"name\":\"Progress in Nuclear Magnetic Resonance Spectroscopy\",\"volume\":\"120 \",\"pages\":\"Pages 72-94\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.pnmrs.2020.07.002\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Nuclear Magnetic Resonance Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079656520300236\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Magnetic Resonance Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079656520300236","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 15

摘要

锰铁氧体纳米颗粒是超顺磁性的,具有很高的饱和磁化强度,这使它们成为MRI造影剂的候选应用。因为这些纳米颗粒是非常有效的横向弛豫增强剂,它们特别适合作为负(t2加权)造影剂。纳米Mn铁氧体的弛豫大小似乎主要取决于制备方法、尺寸和饱和磁化强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Relaxivity of manganese ferrite nanoparticles

Relaxivity of manganese ferrite nanoparticles

Manganese ferrite nanoparticles are superparamagnetic and have very high saturation magnetization, which makes them candidates for application as MRI contrast agents. Because these nanoparticles are very effective enhancers of transverse relaxation, they are particularly suitable as negative (T2-weighted) contrast agents. The magnitude of the relaxivity of nanoparticulate Mn ferrites seems to be determined mainly by the method of preparation, their dimensions, and their saturation magnetization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.30
自引率
8.20%
发文量
12
审稿时长
62 days
期刊介绍: Progress in Nuclear Magnetic Resonance Spectroscopy publishes review papers describing research related to the theory and application of NMR spectroscopy. This technique is widely applied in chemistry, physics, biochemistry and materials science, and also in many areas of biology and medicine. The journal publishes review articles covering applications in all of these and in related subjects, as well as in-depth treatments of the fundamental theory of and instrumental developments in NMR spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信