Arun Pradhan, Tanya V Kalin, Vladimir V Kalinichenko
{"title":"罕见疾病的基因组编辑。","authors":"Arun Pradhan, Tanya V Kalin, Vladimir V Kalinichenko","doi":"10.1007/s40778-020-00175-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of the review: </strong>Significant numbers of patients worldwide are affected by various rare diseases, but the effective treatment options to these individuals are limited. Rare diseases remain underfunded compared to more common diseases, leading to significant delays in research progress and ultimately, to finding an effective cure. Here, we review the use of genome-editing tools to understand the pathogenesis of rare diseases and develop additional therapeutic approaches with a high degree of precision.</p><p><strong>Recent findings: </strong>Several genome-editing approaches, including CRISPR/Cas9, TALEN and ZFN, have been used to generate animal models of rare diseases, understand the disease pathogenesis, correct pathogenic mutations in patient-derived somatic cells and iPSCs, and develop new therapies for rare diseases. The CRISPR/Cas9 system stands out as the most extensively used method for genome editing due to its relative simplicity and superior efficiency compared to TALEN and ZFN. CRISPR/Cas9 is emerging as a feasible gene-editing option to treat rare monogenic and other genetically defined human diseases.</p><p><strong>Summary: </strong>Less than 5% of ~7000 known rare diseases have FDA-approved therapies, providing a compelling need for additional research and clinical trials to identify efficient treatment options for patients with rare diseases. Development of efficient genome-editing tools capable to correct or replace dysfunctional genes will lead to novel therapeutic approaches in these diseases.</p>","PeriodicalId":37444,"journal":{"name":"Current Stem Cell Reports","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7653884/pdf/nihms-1610082.pdf","citationCount":"0","resultStr":"{\"title\":\"Genome Editing for Rare Diseases.\",\"authors\":\"Arun Pradhan, Tanya V Kalin, Vladimir V Kalinichenko\",\"doi\":\"10.1007/s40778-020-00175-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of the review: </strong>Significant numbers of patients worldwide are affected by various rare diseases, but the effective treatment options to these individuals are limited. Rare diseases remain underfunded compared to more common diseases, leading to significant delays in research progress and ultimately, to finding an effective cure. Here, we review the use of genome-editing tools to understand the pathogenesis of rare diseases and develop additional therapeutic approaches with a high degree of precision.</p><p><strong>Recent findings: </strong>Several genome-editing approaches, including CRISPR/Cas9, TALEN and ZFN, have been used to generate animal models of rare diseases, understand the disease pathogenesis, correct pathogenic mutations in patient-derived somatic cells and iPSCs, and develop new therapies for rare diseases. The CRISPR/Cas9 system stands out as the most extensively used method for genome editing due to its relative simplicity and superior efficiency compared to TALEN and ZFN. CRISPR/Cas9 is emerging as a feasible gene-editing option to treat rare monogenic and other genetically defined human diseases.</p><p><strong>Summary: </strong>Less than 5% of ~7000 known rare diseases have FDA-approved therapies, providing a compelling need for additional research and clinical trials to identify efficient treatment options for patients with rare diseases. Development of efficient genome-editing tools capable to correct or replace dysfunctional genes will lead to novel therapeutic approaches in these diseases.</p>\",\"PeriodicalId\":37444,\"journal\":{\"name\":\"Current Stem Cell Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7653884/pdf/nihms-1610082.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Stem Cell Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40778-020-00175-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/7/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Stem Cell Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40778-020-00175-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/7/7 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Purpose of the review: Significant numbers of patients worldwide are affected by various rare diseases, but the effective treatment options to these individuals are limited. Rare diseases remain underfunded compared to more common diseases, leading to significant delays in research progress and ultimately, to finding an effective cure. Here, we review the use of genome-editing tools to understand the pathogenesis of rare diseases and develop additional therapeutic approaches with a high degree of precision.
Recent findings: Several genome-editing approaches, including CRISPR/Cas9, TALEN and ZFN, have been used to generate animal models of rare diseases, understand the disease pathogenesis, correct pathogenic mutations in patient-derived somatic cells and iPSCs, and develop new therapies for rare diseases. The CRISPR/Cas9 system stands out as the most extensively used method for genome editing due to its relative simplicity and superior efficiency compared to TALEN and ZFN. CRISPR/Cas9 is emerging as a feasible gene-editing option to treat rare monogenic and other genetically defined human diseases.
Summary: Less than 5% of ~7000 known rare diseases have FDA-approved therapies, providing a compelling need for additional research and clinical trials to identify efficient treatment options for patients with rare diseases. Development of efficient genome-editing tools capable to correct or replace dysfunctional genes will lead to novel therapeutic approaches in these diseases.
期刊介绍:
The goal of this journal is to publish cutting-edge reviews on subjects pertinent to all aspects of stem cell research, therapy, ethics, commercialization, and policy. We aim to provide incisive, insightful, and balanced contributions from leading experts in each relevant domain that will be of immediate interest to a wide readership of clinicians, basic scientists, and translational investigators.
We accomplish this aim by appointing major authorities to serve as Section Editors in key subject areas across the discipline. Section Editors select topics to be reviewed by leading experts who emphasize recent developments and highlight important papers published over the past year on their topics, in a crisp and readable format. We also provide commentaries from well-known figures in the field, and an Editorial Board of internationally diverse members suggests topics of special interest to their country/region and ensures that topics are current and include emerging research.