趋化因子cxcl14样免疫反应性在大鼠背角与生长抑素共存,而与NPY不共存,并与脊髓外核gaba能神经元密切相关。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2020-10-29 Epub Date: 2020-10-20 DOI:10.1267/ahc.20-00004
Toshiharu Yamamoto, Kenichi Sasaguri, Natsuki Mizumoto, Hirohumi Suzuki
{"title":"趋化因子cxcl14样免疫反应性在大鼠背角与生长抑素共存,而与NPY不共存,并与脊髓外核gaba能神经元密切相关。","authors":"Toshiharu Yamamoto,&nbsp;Kenichi Sasaguri,&nbsp;Natsuki Mizumoto,&nbsp;Hirohumi Suzuki","doi":"10.1267/ahc.20-00004","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies have proposed that the chemokine CXCL14 not only has a chemotactic activity, but also functions as a neuromodulator and/or neurotransmitter. In this study, we investigated the distribution of CXCL14 immunoreactive structures in the rat spinal cord and clarified the association of these structures with somatostatin, glutamic acid decarboxylase (GAD; a marker for GABAergic neurons), and neuropeptide Y (NPY). CXCL14 immunoreactive fibers and puncta were observed in lamina II, which modulates somatosensation including nociception, and the lateral spinal nucleus of the spinal dorsal horn at cervical, thoracic, and lumber spinal cord levels. These CXCL14 immunoreactive structures were also immuno-positive for somatostatin, but were immuno-negative for GAD and NPY. In the cervical lateral spinal nucleus, CXCL14 immunoreactive puncta, which were also immuno-positive for somatostatin, existed along the proximal dendrites of some of GABAergic neurons. Together, these results suggest that CXCL14 contributes to the modulation of somatosensation in concert with somatostatin. Neurons targeted by the CXCL14 fiber system include GABAergic neurons located in the lateral spinal nucleus suggesting that CXCL14 with somatostatin can influence the GABAergic neuron function.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7642483/pdf/","citationCount":"6","resultStr":"{\"title\":\"The Chemokine CXCL14-like Immunoreactivity Co-exists with Somatostatin, but not NPY in the Rat Dorsal Horn and Has Intimate Association with GABAergic Neurons in the Lateral Spinal Nucleus.\",\"authors\":\"Toshiharu Yamamoto,&nbsp;Kenichi Sasaguri,&nbsp;Natsuki Mizumoto,&nbsp;Hirohumi Suzuki\",\"doi\":\"10.1267/ahc.20-00004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent studies have proposed that the chemokine CXCL14 not only has a chemotactic activity, but also functions as a neuromodulator and/or neurotransmitter. In this study, we investigated the distribution of CXCL14 immunoreactive structures in the rat spinal cord and clarified the association of these structures with somatostatin, glutamic acid decarboxylase (GAD; a marker for GABAergic neurons), and neuropeptide Y (NPY). CXCL14 immunoreactive fibers and puncta were observed in lamina II, which modulates somatosensation including nociception, and the lateral spinal nucleus of the spinal dorsal horn at cervical, thoracic, and lumber spinal cord levels. These CXCL14 immunoreactive structures were also immuno-positive for somatostatin, but were immuno-negative for GAD and NPY. In the cervical lateral spinal nucleus, CXCL14 immunoreactive puncta, which were also immuno-positive for somatostatin, existed along the proximal dendrites of some of GABAergic neurons. Together, these results suggest that CXCL14 contributes to the modulation of somatosensation in concert with somatostatin. Neurons targeted by the CXCL14 fiber system include GABAergic neurons located in the lateral spinal nucleus suggesting that CXCL14 with somatostatin can influence the GABAergic neuron function.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7642483/pdf/\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1267/ahc.20-00004\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/10/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1267/ahc.20-00004","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/10/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

摘要

近年来的研究表明,趋化因子CXCL14不仅具有趋化活性,还具有神经调节剂和/或神经递质的功能。在本研究中,我们研究了CXCL14免疫反应结构在大鼠脊髓中的分布,并阐明了这些结构与生长抑素、谷氨酸脱羧酶(GAD;gaba能神经元的标记物)和神经肽Y (NPY)。在调节躯体感觉(包括伤害感觉)的II层和颈、胸、腰脊髓水平的脊髓背角侧核中观察到CXCL14免疫反应纤维和点。这些CXCL14免疫反应性结构对生长抑素也呈免疫阳性,但对GAD和NPY呈免疫阴性。在颈侧脊髓核中,沿部分gaba能神经元近端树突存在生长抑素免疫阳性的CXCL14免疫反应点。综上所述,这些结果表明CXCL14与生长抑素一起参与躯体感觉的调节。CXCL14纤维系统靶向的神经元包括位于脊髓外侧核的gaba能神经元,这表明CXCL14结合生长抑素可以影响gaba能神经元的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Chemokine CXCL14-like Immunoreactivity Co-exists with Somatostatin, but not NPY in the Rat Dorsal Horn and Has Intimate Association with GABAergic Neurons in the Lateral Spinal Nucleus.

The Chemokine CXCL14-like Immunoreactivity Co-exists with Somatostatin, but not NPY in the Rat Dorsal Horn and Has Intimate Association with GABAergic Neurons in the Lateral Spinal Nucleus.

The Chemokine CXCL14-like Immunoreactivity Co-exists with Somatostatin, but not NPY in the Rat Dorsal Horn and Has Intimate Association with GABAergic Neurons in the Lateral Spinal Nucleus.

The Chemokine CXCL14-like Immunoreactivity Co-exists with Somatostatin, but not NPY in the Rat Dorsal Horn and Has Intimate Association with GABAergic Neurons in the Lateral Spinal Nucleus.

Recent studies have proposed that the chemokine CXCL14 not only has a chemotactic activity, but also functions as a neuromodulator and/or neurotransmitter. In this study, we investigated the distribution of CXCL14 immunoreactive structures in the rat spinal cord and clarified the association of these structures with somatostatin, glutamic acid decarboxylase (GAD; a marker for GABAergic neurons), and neuropeptide Y (NPY). CXCL14 immunoreactive fibers and puncta were observed in lamina II, which modulates somatosensation including nociception, and the lateral spinal nucleus of the spinal dorsal horn at cervical, thoracic, and lumber spinal cord levels. These CXCL14 immunoreactive structures were also immuno-positive for somatostatin, but were immuno-negative for GAD and NPY. In the cervical lateral spinal nucleus, CXCL14 immunoreactive puncta, which were also immuno-positive for somatostatin, existed along the proximal dendrites of some of GABAergic neurons. Together, these results suggest that CXCL14 contributes to the modulation of somatosensation in concert with somatostatin. Neurons targeted by the CXCL14 fiber system include GABAergic neurons located in the lateral spinal nucleus suggesting that CXCL14 with somatostatin can influence the GABAergic neuron function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信