{"title":"大麻素受体信号的神经生物学\u2029。","authors":"Beat Lutz","doi":"10.31887/DCNS.2020.22.3/blutz","DOIUrl":null,"url":null,"abstract":"<p><p>The endocannabinoid system (ECS) is a highly versatile signaling system within the nervous system. Despite its widespread localization, its functions within the context of distinct neural processes are very well discernable and specific. This is remarkable, and the question remains as to how such specificity is achieved. One key player in the ECS is the cannabinoid type 1 receptor (CB<sub>1</sub>), a G protein-coupled receptor characterized by the complexity of its cell-specific expression, cellular and subcellular localization, and its adaptable regulation of intracellular signaling cascades. CB<sub>1</sub> receptors are involved in different synaptic and cellular plasticity processes and in the brain's bioenergetics in a context-specific manner. CB<sub>2</sub> receptors are also important in several processes in neurons, glial cells, and immune cells of the brain. As polymorphisms in ECS components, as well as external impacts such as stress and metabolic challenges, can both lead to dysregulated ECS activity and subsequently to possible neuropsychiatric disorders, pharmacological intervention targeting the ECS is a promising therapeutic approach. Understanding the neurobiology of cannabinoid receptor signaling in depth will aid optimal design of therapeutic interventions, minimizing unwanted side effects.\u2029.</p>","PeriodicalId":54343,"journal":{"name":"Dialogues in Clinical Neuroscience","volume":"22 3","pages":"207-222"},"PeriodicalIF":8.3000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/13/5c/DialoguesClinNeurosci-22-207.PMC7605026.pdf","citationCount":"37","resultStr":"{\"title\":\"Neurobiology of cannabinoid receptor signaling\\u2029.\",\"authors\":\"Beat Lutz\",\"doi\":\"10.31887/DCNS.2020.22.3/blutz\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The endocannabinoid system (ECS) is a highly versatile signaling system within the nervous system. Despite its widespread localization, its functions within the context of distinct neural processes are very well discernable and specific. This is remarkable, and the question remains as to how such specificity is achieved. One key player in the ECS is the cannabinoid type 1 receptor (CB<sub>1</sub>), a G protein-coupled receptor characterized by the complexity of its cell-specific expression, cellular and subcellular localization, and its adaptable regulation of intracellular signaling cascades. CB<sub>1</sub> receptors are involved in different synaptic and cellular plasticity processes and in the brain's bioenergetics in a context-specific manner. CB<sub>2</sub> receptors are also important in several processes in neurons, glial cells, and immune cells of the brain. As polymorphisms in ECS components, as well as external impacts such as stress and metabolic challenges, can both lead to dysregulated ECS activity and subsequently to possible neuropsychiatric disorders, pharmacological intervention targeting the ECS is a promising therapeutic approach. Understanding the neurobiology of cannabinoid receptor signaling in depth will aid optimal design of therapeutic interventions, minimizing unwanted side effects.\\u2029.</p>\",\"PeriodicalId\":54343,\"journal\":{\"name\":\"Dialogues in Clinical Neuroscience\",\"volume\":\"22 3\",\"pages\":\"207-222\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/13/5c/DialoguesClinNeurosci-22-207.PMC7605026.pdf\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dialogues in Clinical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.31887/DCNS.2020.22.3/blutz\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dialogues in Clinical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.31887/DCNS.2020.22.3/blutz","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
The endocannabinoid system (ECS) is a highly versatile signaling system within the nervous system. Despite its widespread localization, its functions within the context of distinct neural processes are very well discernable and specific. This is remarkable, and the question remains as to how such specificity is achieved. One key player in the ECS is the cannabinoid type 1 receptor (CB1), a G protein-coupled receptor characterized by the complexity of its cell-specific expression, cellular and subcellular localization, and its adaptable regulation of intracellular signaling cascades. CB1 receptors are involved in different synaptic and cellular plasticity processes and in the brain's bioenergetics in a context-specific manner. CB2 receptors are also important in several processes in neurons, glial cells, and immune cells of the brain. As polymorphisms in ECS components, as well as external impacts such as stress and metabolic challenges, can both lead to dysregulated ECS activity and subsequently to possible neuropsychiatric disorders, pharmacological intervention targeting the ECS is a promising therapeutic approach. Understanding the neurobiology of cannabinoid receptor signaling in depth will aid optimal design of therapeutic interventions, minimizing unwanted side effects. .
期刊介绍:
Dialogues in Clinical Neuroscience (DCNS) endeavors to bridge the gap between clinical neuropsychiatry and the neurosciences by offering state-of-the-art information and original insights into pertinent clinical, biological, and therapeutic aspects. As an open access journal, DCNS ensures accessibility to its content for all interested parties. Each issue is curated to include expert reviews, original articles, and brief reports, carefully selected to offer a comprehensive understanding of the evolving landscape in clinical neuroscience. Join us in advancing knowledge and fostering dialogue in this dynamic field.