{"title":"在精准肿瘤学中利用大数据和机器学习。","authors":"Nirmish Singla, Shyamli Singla","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>While multi-level molecular \"omic\" analyses have undoubtedly increased the sophistication and depth with which we can understand cancer biology, the challenge is to make this overwhelming wealth of data relevant to the clinician and the individual patient. Bridging this gap serves as the cornerstone of precision medicine, yet the expense and difficulty of executing and interpreting these molecular studies make it impractical to routinely implement them in the clinical setting. Herein, we propose that machine learning may hold the key to guiding the future of precision oncology accurately and efficiently. Training deep learning models to interpret the histopathologic or radiographic appearance of tumors and their microenvironment-a phenotypic microcosm of their inherent molecular biology-has the potential to output relevant diagnostic, prognostic, and therapeutic patient-level data. This type of artificial intelligence framework may effectively shape the future of precision oncology by fostering multidisciplinary collaboration.</p>","PeriodicalId":74040,"journal":{"name":"Kidney cancer journal : official journal of the Kidney Cancer Association","volume":"18 3","pages":"83-84"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7644120/pdf/nihms-1640922.pdf","citationCount":"0","resultStr":"{\"title\":\"Harnessing Big Data with Machine Learning in Precision Oncology.\",\"authors\":\"Nirmish Singla, Shyamli Singla\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While multi-level molecular \\\"omic\\\" analyses have undoubtedly increased the sophistication and depth with which we can understand cancer biology, the challenge is to make this overwhelming wealth of data relevant to the clinician and the individual patient. Bridging this gap serves as the cornerstone of precision medicine, yet the expense and difficulty of executing and interpreting these molecular studies make it impractical to routinely implement them in the clinical setting. Herein, we propose that machine learning may hold the key to guiding the future of precision oncology accurately and efficiently. Training deep learning models to interpret the histopathologic or radiographic appearance of tumors and their microenvironment-a phenotypic microcosm of their inherent molecular biology-has the potential to output relevant diagnostic, prognostic, and therapeutic patient-level data. This type of artificial intelligence framework may effectively shape the future of precision oncology by fostering multidisciplinary collaboration.</p>\",\"PeriodicalId\":74040,\"journal\":{\"name\":\"Kidney cancer journal : official journal of the Kidney Cancer Association\",\"volume\":\"18 3\",\"pages\":\"83-84\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7644120/pdf/nihms-1640922.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kidney cancer journal : official journal of the Kidney Cancer Association\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kidney cancer journal : official journal of the Kidney Cancer Association","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Harnessing Big Data with Machine Learning in Precision Oncology.
While multi-level molecular "omic" analyses have undoubtedly increased the sophistication and depth with which we can understand cancer biology, the challenge is to make this overwhelming wealth of data relevant to the clinician and the individual patient. Bridging this gap serves as the cornerstone of precision medicine, yet the expense and difficulty of executing and interpreting these molecular studies make it impractical to routinely implement them in the clinical setting. Herein, we propose that machine learning may hold the key to guiding the future of precision oncology accurately and efficiently. Training deep learning models to interpret the histopathologic or radiographic appearance of tumors and their microenvironment-a phenotypic microcosm of their inherent molecular biology-has the potential to output relevant diagnostic, prognostic, and therapeutic patient-level data. This type of artificial intelligence framework may effectively shape the future of precision oncology by fostering multidisciplinary collaboration.